BSM theory perspectives for Run 3 and beyond

Roberto Franceschini University and INFN Roma Tre

June 5th 2024

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

Topics in BSM

- BSM is in part "opinion based", in part "evidence based"
- Driven by the shortcomings of the SM that we deem as important and timely to work on
- We are sure of nothing, but we try to imagine everything about how things could be and make sense of it.

- Lots of "ideas" build on past experience:
 - in the 60s & 70s: "Gauge symmetry worked for QED let us do it for the other forces"
 - today: "The Higgs boson might be a composite like the pion, that is the lightest of the mesons" or "Symmetry protects the masses of fermions, let us do the same for Higgs boson(s)" or "There are flavors of fermions, let us do the same for Higgs boson(s)"

Well recognized topics (including at this conference)

- "Straight Face" Supersymmetry
- EFT for decoupled New Physics
- BSM in Higgs (single couplings, self-coupling)
- New Vector-Like Fermions, Vector Resonances, Scalars
- Used to be "off the beaten path": See Andrea Thamm, Dipan Sengupta earlier in this conference
 - Dark Sectors (with and without resonances)
 - (Very) Light Particles (may overlap with Dark sector)
 - Long Lived Particles

- Run3 and HL-LHC highlights and strategic goals:
 - Precision era in SM measurements and BSM (look under every rock, even those you are "sure" they will bring no results)
 - Re-interpretation and re-use of results (SModelS, CheckMATE, Contour, ...)
 - Impact on indirect limits for Future Colliders (*rate* $\sim M_{NP}^{-4}$)
 - High- p_T precision era

Outline

LHC has excluded light new physics, period.

100 GeV 1 TeV

LHC has excluded light new physics, period.

ATLAS SUSY Searches* - 95% CL Lower Limits

August 2023 $\sqrt{s} = 13 \text{ TeV}$											
	Model	S	ignatur	e ∫∠	<i>C dt</i> [fb ⁻	¹] Ma	ss limit				Reference
Sč	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$	0 <i>e</i> , μ mono-jet	2-6 jets 1-3 jets	$E_T^{ m miss}$ $E_T^{ m miss}$	140 140	 <i>q</i> [1×, 8× Degen.] <i>q</i> [8× Degen.] 		1.0 0.9	1.85	$\mathfrak{m}(ilde{\chi}_1^0){<}400{ m GeV}\ \mathfrak{m}(ilde{q}){=}5{ m GeV}$	2010.14293 2102.10874
arche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	140	ం సార్		Forbidden	1.15-1.95	2.3 $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ $m(\tilde{\chi}_1^0)=1000 \text{ GeV}$	2010.14293 2010.14293
e Se	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow a\bar{a}(\ell\ell)\tilde{\chi}_{1}^{0}$	1 e,μ ee,μμ	2-6 jets 2 jets	E_{T}^{miss}	140 140	250 250			2	.2 $m(\tilde{\chi}_1^0) < 600 \text{ GeV}$.2 $m(\tilde{\chi}_1^0) < 700 \text{ GeV}$	2101.01629 2204.13072
clusiv	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 <i>e</i> ,μ SS <i>e</i> ,μ	7-11 jets 6 jets	E_T^{miss}	140 140	100 ibo		1	1.97 .15	$m(\tilde{\chi}_1^0)$ <600 GeV $m(\tilde{g})$ - $m(\tilde{\chi}_1^0)$ =200 GeV	2008.06032 2307.01094
ц	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ SS <i>e</i> ,μ	3 <i>b</i> 6 jets	$E_T^{\rm miss}$	140 140	200 JOD			1.25	2.45 $m(\tilde{\chi}_1^0) < 500 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_1^0) = 300 \text{ GeV}$	2211.08028 1909.08457
	$ ilde{b}_1 ilde{b}_1$	0 <i>e</i> , <i>µ</i>	2 <i>b</i>	$E_T^{\rm miss}$	140	${egin{array}{c} { ilde b}_1 \ { ilde b}_1 \end{array}$	().68	1.255	$m(ilde{\chi}_1^0){<}400GeV$ 10 GeV ${<}\Deltam(ilde{b}_1, ilde{\chi}_1^0){<}20GeV$	2101.12527 2101.12527
3 rd gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 <i>e</i> , μ 2 τ	6 <i>b</i> 2 <i>b</i>	$E_T^{ m miss} \ E_T^{ m miss}$	140 140	<i>b</i> ₁ Forbidden <i>b</i> ₁		0. 0.13-0.85	.23-1.35	$\begin{array}{l} \Delta m(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0}) {=} 130 \mathrm{GeV}, m(\tilde{\chi}_{1}^{0}) {=} 100 \mathrm{GeV} \\ \Delta m(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0}) {=} 130 \mathrm{GeV}, m(\tilde{\chi}_{1}^{0}) {=} 0 \mathrm{GeV} \end{array}$	1908.03122 2103.08189
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \to t \tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \to W h \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ 1 <i>e</i> ,μ	≥ 1 jet 3 jets/1 b	$E_T^{ m miss} \ E_T^{ m miss}$	140 140	\widetilde{t}_1 \widetilde{t}_1	Forbidden	1.05	1.25	$m(\tilde{\chi}_1^0)=1 \text{ GeV}$ $m(\tilde{\chi}_1^0)=500 \text{ GeV}$	2004.14060, 2012.03799 2012.03799, ATLAS-CONF-2023-043
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b\nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$	1-2 τ	2 jets/1 b	E_T^{miss}	140	\tilde{t}_1	F	orbidden	1.4	$m(\tilde{\tau}_1)=800 \text{ GeV}$	2108.07665
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \chi_1^\circ / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \chi_1^\circ$	0 <i>e</i> , μ 0 <i>e</i> , μ	2 <i>c</i> mono-jet	E_T^{miss} E_T^{miss}	36.1 140	\widetilde{t}_1	0.55	0.85			1805.01649 2102.10874
	$ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0 \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z $	1-2 e,μ 3 e,μ	1-4 <i>b</i> 1 <i>b</i>	E_T^{miss} E_T^{miss}	140 140	$ ilde{t}_1 \\ ilde{t}_2$	Forbidden	0.067-1 0.86	1.18	$m(\tilde{\chi}_{2}^{0})=500 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=360 \text{ GeV}, m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0})=40 \text{ GeV}$	2006.05880 2006.05880
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	Multiple ℓ /jets $ee, \mu\mu$	s ≥1 jet	$E_T^{ m miss}$ $E_T^{ m miss}$	140 140			0.96		m($ ilde{\chi}_1^0$)=0, wino-bino m($ ilde{\chi}_1^{\pm}$)-m($ ilde{\chi}_1^0$)=5 GeV, wino-bino	2106.01676, 2108.07586 1911.12606
	$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}$ via WW	$2 e, \mu$	_	$E_T^{\rm miss}$	140	$\tilde{\chi}_1^{\pm}$	0.42			$m(\tilde{\chi}_1^0)=0, \text{ wino-bino}$	1908.08215
	$\chi_1^+ \chi_2^\circ$ via Wh $\tilde{\chi}_1^+ \tilde{\chi}_1^+$ via $\tilde{\ell}_L / \tilde{\nu}$	Multiple ℓ / jets 2 e, μ	S	E_T^{miss} E_T^{miss}	140 140			1.06		m(χ_1°)=70 GeV, wino-bino m($\tilde{\ell} \tilde{\nu}$)=0.5(m($\tilde{\chi}_1^{\pm}$)+m($\tilde{\chi}_1^{0}$))	2004.10894, 2108.07586 1908.08215
W ect	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$	2 τ		E_{T}^{miss}	140	$\tilde{\tau}$ [$\tilde{\tau}_{\mathrm{R}}, \tilde{\tau}_{\mathrm{R},\mathrm{L}}$] 0.	.34 0.48			$m(\tilde{\chi}_1^0)=0$	ATLAS-CONF-2023-029
<u>ді</u> Ш	$\tilde{\ell}_{\mathrm{L,R}}\tilde{\ell}_{\mathrm{L,R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0}$	2 e, μ ee, μμ	0 jets ≥ 1 jet	$E_T^{ m miss}$ $E_T^{ m miss}$	140 140	${\scriptstyle \widetilde{\ell} \atop \widetilde{\ell}}$ 0.26		0.7		$m(\tilde{\ell})=0$ $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10~GeV$	1908.08215 1911.12606
	$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	0 e, μ 4 e, μ	$\geq 3 b$ 0 jets	$E_T^{ m miss}$ $E_T^{ m miss}$	140 140	Ĥ Ĥ	0.55	0.94		$BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1$ $BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1$	To appear 2103.11684
		0 <i>e</i> ,μ	≥ 2 large jet	S E_T^{fmiss}	140	Ĩ Ĩ		0.45-0.93		$BR(\tilde{\chi}_1^0 \to Z\tilde{G}) = 1$	2108.07586
		2 e,µ	≥ 2 jets	E_T^{mass}	140	Н		0.77		$BR(\mathcal{X}_1^* \to ZG) = BR(\mathcal{X}_1^* \to hG) = 0.5$	2204.13072
D (Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	140	$ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} $ 0.21	0	66		Pure Wino Pure higgsino	2201.02472 2201.02472
-live icle	Stable \tilde{g} R-hadron	pixel dE/dx		E_T^{miss}	140	\tilde{g}			2.05	(²⁰) (20 0)	2205.06013
arti	Metastable g R-hadron, $g \rightarrow qq\chi_1$ $\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell\tilde{G}$	Displ. lep		E_T^{miss} E_T^{miss}	140 140	$g [\tau(g) = 10 \text{ ms}]$ $\tilde{e}, \tilde{\mu}$		0.7	2	$\pi(\chi_1) = 100 \text{ GeV}$ $\tau(\tilde{\ell}) = 0.1 \text{ ns}$	2011.07812
р Го	,	pixel dE/dx		E_T^{miss}	140	$\tilde{\tau}$ 0. $\tilde{\tau}$	34 0.36	_		$ au(ilde{\ell})=$ 0.1 ns $ au(ilde{\ell})=$ 10 ns	2011.07812 2205.06013
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0$, $\tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 <i>e</i> , μ	0 ista	rmiss	140	$\tilde{\chi}_1^{\mp}/\tilde{\chi}_1^0$ [BR($Z\tau$)=1, BR(Ze)=1]	0.62	5 1.05	5	Pure Wino	2011.10543
	$\begin{array}{ccc} \chi_1^-\chi_1^-/\chi_2^\circ \to WW/Z\ell\ell\ell\ell\ell\nu\nu\\ \tilde{a}\tilde{a} & \tilde{a} \to aa\tilde{\chi}^0, \tilde{\chi}^0 \to aaa \end{array}$	4 <i>e</i> , µ	o jets ≥8 iets	E_T^{mass}	140 140	$\begin{array}{l} \chi_1^-/\chi_2^- [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0] \\ \tilde{\mathbf{q}} [\mathrm{m}(\tilde{\boldsymbol{\chi}}^0) = 50 \text{ GeV } 1250 \text{ GeV}] \end{array}$		0.95	1.55	$m(\chi_1) = 200 \text{ GeV}$ 25 Large χ''_{12}	2103.11684 To appear
>	$\widetilde{t}\widetilde{t}, \ \widetilde{t} \to t\widetilde{\chi}_1^0, \ \widetilde{\chi}_1^0 \to tbs$		Multiple		36.1	$\tilde{t} = [\lambda''_{323} = 2e-4, 1e-2]$	0.55	1.05	5	$m(\tilde{\chi}_1^0)$ =200 GeV, bino-like	ATLAS-CONF-2018-003
RР	$\widetilde{t}\widetilde{t}, \widetilde{t} \to b\widetilde{\chi}_1^{\pm}, \widetilde{\chi}_1^{\pm} \to bbs$		$\geq 4b$		140	Ĩ	Forbidden	0.95		$m(ilde{\mathcal{X}}_1^{\pm})$ =500 GeV	2010.01015
	$ \begin{aligned} t_1 t_1, t_1 \to \mathcal{O}S \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \to q\ell \end{aligned} $	2 e, µ	2 jets + 2 b 2 b		36.7 36.1	$\tilde{t}_1 [qq, bs]$ \tilde{t}_1	0.42 0.61		0.4-1.45	$BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$	1/10.0/1/1 1710.05544
	~+.~0.~0 ~~~	1μ	DV		136	\tilde{t}_1 [1e-10< λ'_{23k} <1e-8, 3e-10< λ'_{23k}	<3e-9]	1.0	1.6	$BR(\tilde{t}_1 \to q\mu) = 100\%, \cos\theta_t = 1$	2003.11956
	$\chi_1^+/\chi_2^\circ/\chi_1^\circ, \tilde{\chi}_{1,2}^0 \rightarrow tbs, \tilde{\chi}_1^+ \rightarrow bbs$	1-2 <i>e</i> ,μ	≥6 jets		140	<i>X</i> ₁ ^v 0.2-0.32	2	_		Pure higgsino	2106.09609

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on

10⁻¹

ATLAS Preliminary

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

Mass scale [TeV]

LHC has excluded light new physics, period.

(2023) 83:718 Eur. Phys. J. C https://doi.org/10.1140/epjc/s10052-023-11508-9

THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Experimental Physics

Measurements of W^+W^- production in decay topologies inspired by searches for electroweak supersymmetry

ATLAS Collaboration*

CERN, 1211 Geneva 23, Switzerland

Received: 1 July 2022 / Accepted: 9 October 2022 © CERN for the benefit of the ATLAS collaboration 2023

Abstract This paper presents a measurement of fiducial and differential cross-sections for W^+W^- production in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the Large Hadron Collider using a dataset corresponding to an integrated luminosity of 139 fb $^{-1}$. Events with exactly one electron, one muon and no hadronic jets are studied. The fiducial region in which the measurements are performed is inspired by searches for the electroweak production of supersymmetric charginos decaying to twolepton final states. The selected events have moderate values of missing transverse momentum and the 'stransverse mass' variable m_{T2} , which is widely used in searches for supersymmetry at the LHC. The ranges of these variables are chosen so that the acceptance is enhanced for direct W^+W^- production and suppressed for production via top quarks, which is treated as a background. The fiducial cross-section and particle-level differential cross-sections for six variables are measured and compared with two theoretical SM predictions from perturbative QCD calculations.

718 Page 12 of 29

(2023) 83:718 Eur. Phys. J. C

Table 4 Chi-squared per number of degrees of freedom χ^2 /NDF for a comparison of unfolded distributions with different theory predictions. The calculation takes into account bin-by-bin correlations of systematic

and statistical uncertainties. Uncertainties in the theory predictions are not considered

	$ y_{e\mu} $	$ \Delta \phi_{e\mu} $	$\cos heta^*$	$p_{\mathrm{T}}^{\mathrm{lead}\ell}$	$m_{e\mu}$
POWHEG BOX V2+PYTHIA8 $(q\bar{q})$ and Sherpa 2.2.2+Open Loops (gg)	14.4/8	10.1/10	13.3/7	15.4/6	2.8/6
SHERPA 2.2.2 $(q\bar{q})$ and SHERPA 2.2.2+OPEN LOOPS (gg)	18.3/8	17.9/10	24.5/7	24.1/6	2.5/6

Regular Article - Experimental Physics

Measurements of W^+W^- production in decay topologies inspired by searches for electroweak supersymmetry

ATLAS Collaboration*

CERN, 1211 Geneva 23, Switzerland

"This is one example of reaching the finest control and the highest scrutiny for a measurement of SM final states. Abstract This paper presents a measure and differential cross-sections for W^+W^- production in proton-proton collisions at $\sqrt{s} = 13$ T (In the observation by the production of the productio

responding to an integrated luminosity of 139 fb^{-1} . Events with exactly one electron, one muon and no hadronic jets are studied. The fiducial region in which the measurements are performed is inspired by searches for the electroweak production of supersymmetric charginos decaying to twolepton final states. The selected events have moderate values of missing transverse momentum and the 'stransverse mass' variable m_{T2} , which is widely used in searches for supersymmetry at the LHC. The ranges of these variables are chosen so that the acceptance is enhanced for direct W^+W^- production and suppressed for production via top quarks, which is treated as a background. The fiducial cross-section and particle-level differential cross-sections for six variables are measured and compared with two theoretical SM predictions from perturbative QCD calculations.

	$ y_{e\mu} $	$ \Delta \phi_{e\mu} $	$\cos heta^*$	$p_{\mathrm{T}}^{\mathrm{lead}\ell}$	$m_{e\mu}$
POWHEG BOX V2+PYTHIA8 $(q\bar{q})$ and Sherpa 2.2.2+Open Loops (gg)	14.4/8	10.1/10	13.3/7	15.4/6	2.8/6
SHERPA 2.2.2 $(q\bar{q})$ and SHERPA 2.2.2 + OPEN LOOPS (gg)	18.3/8	17.9/10	24.5/7	24.1/6	2.5/6

2.5 3

 $|\Delta \phi_{e\mu}|$

3.9/5

4.1/5

STANDARD MODEL

EASURE

SEARCH MEASURE

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

SEARCH MEASURE

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

"light" new physics in between tail-searches and measurements TeV **SMEFT** p_T supra – electroweak $\gg m_W$

0.120.1LHC@13TeV dist. 0.08 \blacksquare SM($\mu \nu_{\mu}$) Norm. 0.06 $\mu \,
u_4$ 0.04 0.021 ð $S/B \times 10^3$ 240 60 80 100120 $m_T[\text{GeV}]$

 \boldsymbol{q}

Q

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

 \boldsymbol{q}

Q

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

 \boldsymbol{q}

Q

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

 \boldsymbol{q}

Q

- quantity)

This is a widely applicable lesson **Run3 and HL-LHC the ideal time to apply it!**

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

Every SM measurement is a new physics search.

Every BSM search is a SM measurement (of some

- quantity)

This is a widely applicable lesson **Run3 and HL-LHC the ideal time to apply it!**

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

Every SM measurement is a new physics search.

Every BSM search is a SM measurement (of some

Situation in top quark physics

- **Observed** limits
- - Expected limits
- 2015–2018 data, $\sqrt{s} = 13$ TeV, 139 fb⁻¹ Monojet, $\tilde{t}_1 \rightarrow bff' \tilde{\chi}_1^0$ (34) $= 1L, \widetilde{t}_1 \to t \widetilde{\chi}_1 / \widetilde{t}_1 \to b W \widetilde{\chi}_1^0 / \widetilde{t}_1 \to b f f' \widetilde{\chi}_1^0 \quad (36)$ $= 2L, \widetilde{t}_1 \to t \widetilde{\chi}_1^0 / \widetilde{t}_1 \to b W \widetilde{\chi}_1^0 / \widetilde{t}_1 \to b f f' \widetilde{\chi}_1^0 \quad (37)$
- 2015–2016 data, $\sqrt{s} = 13$ TeV, 36.1 fb⁻¹ $\widetilde{t_1} \to t \widetilde{\chi}_1^0 / \widetilde{t_1} \to b W \widetilde{\chi}_1^0 / \widetilde{t_1} \to b f \widetilde{\chi}_1^0 \quad (38-41)$ $---- t\bar{t}, \ \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0 \quad (42)$
- 2012 data, $\sqrt{s} = 8 \text{ TeV}$, 20.3 fb⁻¹ $\widetilde{t_1} \to t \widetilde{\chi}_1^0 / \widetilde{t_1} \to b W \widetilde{\chi}_1^0 / \widetilde{t_1} \to b f \widetilde{\chi}_1^0 \quad (43)$

- Every SM measurement is a new physics search.
- Every BSM search is a SM measurement.

Targeted new physics scenario

New physics that gives only "soft" leptons and (b-)jets is not the target of "Search for ..."

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

Due to small mass differences between the NP states each energy release gives "soft" leptons and/or (b-)jets.

Targeted new physics scenario

 $\tilde{t} \rightarrow b \chi^+ \rightarrow b \ell v \chi^0$

 $t \rightarrow h M \rightarrow h l v$

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

Ideally one would have to devise a search analysis that can deal with O(10) GeV p_T leptons and (bottom) jets

All the accurate work on these leptons and jets is already in place for the measurements of top quark properties!

Is this New Physics scenario excluded?

$m_{\tilde{t}} \simeq 200 \text{ GeV}$ $m_{\chi^{\pm}} \simeq 170 \text{ GeV}$ $m_{\chi^0} \simeq 130 \text{ GeV}$

FROM THE CAPTION: The production cross-section is for pure Wino $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$.

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

SU(2) singlet Higgsino - Elle Bino - Higgsino

All limits at 95% CL

Expected limits Observed limits

 $\widetilde{\chi}_1^{\pm}\widetilde{\chi}_2^0 \rightarrow WZ \ \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$ RJR 2I + RJR 3I arXiv:1806.02293 Soft 2I + 3I arXiv:1911.12606 arXiv:2106.01676 2l + jets arXiv:2204.13072 arXiv:2108.07586

It is objectively difficult, if not impossible, to cover all the possible scenario that new physics can populate.

Especially hard with a bunch of 2D plots ...

Recast bounds on the NP scenario

A point that made the development of this idea in practice very difficult for years is the objective difficulty to test if a new physics scenario is excluded by present searches that were not tailored for that scenario.

SLHA or LHE input

Recast bounds on the NP scenario using all analyses included in SModelS

ing 5744 individual maps from 1152 distinct signal regions, 100 different SMS topologies, from a total of 111 analyses

Recast bounds on the NP scenario using all analyses included in SModelS

ng 5744 individual maps from 1152 distinct signal regions, 100 different SMS topologies, from a total of 111 analyses

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

a lucky strike)

Recast bounds on the NP scenario $m_{\tilde{t}} \simeq 200 \text{ GeV}$ $m_{\chi^{\pm}} \simeq 170 \text{ GeV}$ using all analyses included in SModelS sing 5744 individual maps from 1152 distinct signal regions, 100 different SMS topologies, from a total of 111 analyses *r* < 1 $m_{\tilde{t}} = 200 \text{ GeV}$ $m_{\gamma^0} \simeq 130 \text{ GeV}$ 200 2312.09794 There are scenarios in the 1.6 0. 150 0.2 1.8 **MSSM** that ■ 0.4 ■ 2. cannot be 0.6 excluded by the 8.0 $r \simeq 1$ 100 **1**. searches **1.2** presently **1**.4 included in 50 **SModelS**

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

(they even give the right Higgs boson mass at 1-loop, and the correct Higgs boson couplings, but never mind, just a lucky strike)

chargino mass

Top precision measurements in "search mode"

Other observables can be used as well ($p_{T,\ell}, m_{T2}, E_b, \ldots$), a full likelihood study in principle

Sensitivity to the NP scenario

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern Unwersity

Significance ATLAS-CONF-2019-038-PreFit

• Sensitivity from $m_{b\ell}^2$ beyond present bounds

150 -

Possible shift on m_t needs further scrutiny

Key importance of the level of systematic uncertainty

High mass frontier: Every GeV counts

high-mass frontier with significant impact on the status of BSM.

- As the integrated luminosity grows we can see more and more of the high-x tails of the parton distribution functions that result in high-mass or high- p_T events
- This progress may seem obvious, and sometimes is dismissed as "incremental".
- On the contrary, in Run3 and HL-LHC we will explore truly new territory at the

Every GeV counts Full Run2 analyses reach (and sometimes exceed) 3 TeV

Run3 and HL-LHC will determine indirect reach of future e^+e^- (e.g. $e^+e^- \rightarrow tc$ and $BR(t \rightarrow Zc)$ above observable level at future Higgs and top factory)

Every GeV counts Full Run2 analyses reach (and sometimes exceed) 3 TeV

Run3 and HL-LHC will determine indirect reach of future e^+e^- (e.g. $e^+e^- \rightarrow tc$ and $BR(t \rightarrow Zc)$ above observable level at future Higgs and top factory)

Every GeV counts Full Run2 analyses reach (and sometimes exceed) 3 TeV

[qd] **Expected** ± 1 std. deviation **Expected** ± 2 std. deviation 😸 σ_{τΗ} x *B*(W' → WZ) HVT_Β Future $e^+ e^-$ Indirect effects are highly sensitive to the mass scale of new physics (e.g. non-interfering new physics/EFT $\sim \sim_0 M_N P^{eV^4}$)

CMS Supplementary

Run3 and HL-LHC will determine indirect reach of future e^+e^-

(e.g. $e^+e^- \rightarrow tc$ and $BR(t \rightarrow Zc)$ above observable level at future Higgs and top factory)

Electroweak just starts to be interesting

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

Full Run2 analyses finally comparable to LEP probes of Higgs compositeness and universal NP

Electroweak just starts to be interesting

Matter enabled by Run3 and HL-LHC

 $-\frac{W}{4m_W^2} (D_\rho W^a_{\mu\nu})^{2}_{tq}$ $-\frac{\mathrm{Y}}{4m_{W}^{2}}(\partial_{\rho}B_{\mu\nu})$ -0.250.00

-15₋

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

Full Run2 analyses finally comparable to LEP probes of Higgs compositeness and universal NP

LHC measures the size of the Higgs boson

• Probes of new electroweak matter, including (fractions of) Dark

sub-electroweak and circa-electroweak

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

"Every SM measurement is a new physics search. Every **BSM** search is a SM measurement"

new physics **Clearly a Run3 and HL-LHC** intertwined with "specialty" because needs highprecision and time is needed to bring measurements systematics and theory under control. Top quark and electroweak physics are ideal terrain, but this is a general TeV strategy **SMEFT** p_T supra – electroweak $\gg m_W$

sub-electroweak and circa-electroweak

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

"Every SM measurement is a new physics search. Every **BSM** search is a SM measurement"

new physics **Clearly a Run3 and HL-LHC** intertwined with "specialty" because needs highprecision and time is needed to bring measurements systematics and theory under control. Top quark and electroweak physics are ideal terrain, but this is a general TeV strategy **SMEFT** p_T supra – electroweak $\gg m_W$

supra-electroweak

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

Clearly a Run3 and HL-LHC "specialty"

resonant new physics captured by high lumi

supra-electroweak

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

non-resonant new physics "amplified" by high energy

Conclusions

- Plenty of opportunities on all the spectrum
 - physics
- "sub-electroweak" and "circa-electroweak" phase-space
- experimental program and future colliders

 luminosity of order of fractions of ab⁻¹ from Run3 and HL-LHC enable unprecedented sensitivity to key aspects of SM and BSM

New physics searches intertwined with measurement of SM quantities in the

 High-mass "supra-electroweak" regime will cover new ground in Higgs boson and top quark compositeness, probes of electroweak matter, flavor and

electroweak symmetry dynamics \Rightarrow important and broad impact on the

Thank you

Recast bounds on the NP scenario analysis by analysis

1.6

1.6

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

ATLAS SUSY-2019-09

Table 8: Summary of the preselection criteria applied in the SRs of the off-shell WZ selection. In rows where only one value is given it applies to all regions. '-' indicates no requirement is applied for a given variable/region.

	Preselection requirements				
Variable	$SR_{low \not \! E_T}^{offWZ}$ -0j	$SR_{low \not \! E_T}^{off WZ}$ -nj	$SR_{high E_{T}}^{offWZ}$ -0j	SR ^{offWZ} high⊭ _⊤ -nj	
$n_{\rm lep}^{\rm baseline}, n_{\rm lep}^{\rm signal}$			= 3		
n _{SFOS}			≥ 1		
$m_{\ell\ell}^{\text{max}}$ [GeV]			< 75		
$m_{\ell\ell}^{\min}$ [GeV]			∈ [1,75]		
<i>n</i> _{b-jets}			= 0		
$\min \Delta R_{3\ell}$			> 0.4		
Resonance veto $m_{\ell\ell}^{\min}$ [GeV]		∉ [3, 3.2], ∉ [9, 1	12]	-	
Trigger	(multi-)lepton	((mult	$((multi-)lepton \parallel E_{T}^{miss})$	
$n_{\rm jets}^{30 {\rm GeV}}$	= 0	≥ 1	= 0	≥ 1	
$E_{\rm T}^{\rm miss}$ [GeV]	< 50	< 200	> 50	> 200	
$E_{\rm T}^{\rm miss}$ significance	> 1.5	> 3.0	> 3.0	> 3.0	
$p_{\rm T}^{\ell_1}, p_{\rm T}^{\ell_2}, p_{\rm T}^{\ell_3}$ [GeV]		> 10		$> 4.5(3.0)$ for $e(\mu)$	
$ m_{3\ell} - m_Z $ [GeV]	$> 20 \ (\ell_{\rm W}$	= e only)		-	
$\min \Delta R_{SFOS}$	[0.6, 2.4] (8	$C_{\rm W} = e \text{ only}$		-	

Table 2: Summary of the preselection criteria applied in the SRs of the on-shell WZ and Wh selections. In rows where only one value is given it applies to all regions. '-' indicates no requirement is applied for a given variable/region.

	Preselection requirements				
Variable	SR^{WZ}	$SR^{\mathtt{Wh}}_{\mathtt{SFOS}}$	SR ^{Wh} _{DFOS}		
$n_{\rm lep}^{\rm baseline}, n_{\rm lep}^{\rm signal}$		= 3			
Trigger		dilepton			
$p_{\rm T}^{\ell_1}, p_{\rm T}^{\ell_2}, p_{\rm T}^{\ell_3}$ [GeV]		> 25, 20, 10			
$E_{\rm T}^{\rm miss}$ [GeV]		> 50			
<i>n</i> _{<i>b</i>-iets}		= 0			
Resonance veto $m_{\ell\ell}$ [GeV]	> 12	> 12	-		
<i>n</i> _{SFOS}	≥ 1	≥ 1	= 0		
$m_{\ell\ell}$ [GeV]	∈ [75, 105]	∉ [75, 105]	-		
$ m_{3\ell} - m_Z $ [GeV]	> 15	> 15	-		

dedicated analyses for compressed scenarios are included in the recast

In this talk I will elaborate on this theme and provide directions on how to use the measurements of m_{bl} to test new physics scenarios

The message can be spread to other observables: 1D distributions of $p_{T,\ell}, m_{T2}, E_b, \ldots$; 2D distributions as well; a full likelihood study in principle

Targeted new physics scenario

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

Due to small mass differences between the NP states each energy release gives "soft" leptons and/or (b-)jets.

New physics that gives only "soft" leptons and (b-)jets is not the target of "Search for ..."

Targeted new physics scenario

 $\tilde{t} \rightarrow b \chi^+ \rightarrow b \ell v \chi^0$

 $t \rightarrow bW \rightarrow blv$

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

Due to small mass differences between the NP states each Ideally one would have to devise a search analysis that can deal with O(10) GeV p_T leptons and (bottom) jets (b-)jets.

All the accurate work on these leptons and jets is already in place for the measurements of top quark properties!"

Recast bounds on the NP scenario

at several stop quark mass values

neutralino mass

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

2 0.6

Recast bounds on the NP scenario

at several stop quark mass values

Workflow Easily reproducible with well known codes. SLHA-based \rightarrow can be injected in Pythia in your experiment software framework(!)

- Generate MSSM model in SPheno 4.0.1 \rightarrow SLHA file
- Elaborate the SLHA file with SModelS 2.3.3 (using SR combination)
- Find r < 1 or r > 1 (soon available on Zenodo for those who want to inject signals in their top quark property measurements)
- Run Pythia 8.3 to generate SM $t\bar{t}$ "background" and $pp \rightarrow \tilde{t}\tilde{t}$ signal events (relies on Pythia SLHA interface) \rightarrow compute any distribution after selection cuts
- For simplicity we compute the correctly paired $m_{h\ell}$, which is different from CMS and ATLAS choices (interesting question to find out what is the best pairing strategy)

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

Significance estimator $z = \sqrt{\sum_{i} \left(\frac{S_i}{\delta B_i}\right)^2}, m_{\tilde{t}} \simeq 200 \text{ GeV}$

200

injecting MSSM signals in the $m_{b\ell}$ analyses we expect to obtain <u>new</u> bounds on new physics

MS pre-fit hdico.cern.pr/event/1253590/ - June 5th 2024 - Roberto Franceschini CHCP 2024 Boston - Northeastern University

 $m_{\chi^{\pm}}$

Significance ATLAS-CONF-2019-038-PreFit

unlike standard searches that suffer from the softness of the leptons and jets, this analysis leverages the softness of ℓ and jets

200

2

180

160

ATLAS post-fit

 $m_{\chi^{\pm}}$

 $(m_{1}^{2} - m_{2}^{2})(m_{1}^{2} - m_{2}^{2})$

Significance ATLAS-CONF-2019-038-PostF

 $n_{\tilde{\star}} = 200 \,\,\mathrm{Ge}$

100

200

180

Significance estimator $z = \sqrt{\sum}$ $m_{\tilde{t}} \simeq 200 \text{ GeV}$ of the massive invisible χ^0 (or other invisibile state) x

Significance estimator $z = \sqrt{\sum_{i=1}^{\infty} \left(\frac{S_i}{\delta R_i}\right)^2}$ $m_{\tilde{t}} \simeq 200 \text{ GeV}$ the presence of the BSM signal is in general limited to low $m_{b\ell}$, because of the massive invisible χ^0 (or other invisibile state) x

and fall (end-point) 22

Conclusion and outlook

The (HL)LHC will give us more and more data. If we want to exploit them at best we need to

- make the result available in a most reusable way • Recast Exercises are very useful!
- start leveraging the strategies not pursed much so far measure SM in places we had not traditionally Ο
 - done it
 - o search BSM where is not usually sought for
- m_{bl} is a clear example where a Search&Measure approach works that brings new BSM models under the scope, plus it strengthens the "precision" of the SM measurement carried out with the same data more precision observables can be used

https://indico.cern.ch/event/1253590/ - June 5th 2024 - Roberto Franceschini - LHCP 2024 Boston - Northeastern University

Thank you

Figuring Out New Physics

scientific reports

Explore content ~ About the journal ~ Publish with us ~

nature > scientific reports > articles > article

Article Open access Published: 02 May 2024

Active self-treatment of a facial wound with a biologically active plant by a male Sumatran orangutan

Isabelle B. Laumer ^M, Arif Rahman, Tri Rahmaeti, Ulil Azhari, Hermansyah, Sri Suci Utami Atmoko & Caroline Schuppli

Scientific Reports 14, Article number: 8932 (2024) Cite this article

110k Accesses | 1 Citations | 6354 Altmetric | Metrics

Abstract

Although self-medication in non-human animals is often difficult to document systematically due to the difficulty of predicting its occurrence, there is widespread evidence of such behaviors as whole leaf swallowing, bitter pith chewing, and fur rubbing in African great apes, orangutans, white handed gibbons, and several other species of monkeys in Africa, Central and South America and Madagascar. To the best of our knowledge, there is only one report of active wound treatment in non-human animals, namely in chimpanzees. We observed a male Sumatran orangutan (Pongo abelii) who sustained a facial wound. Three days after the injury he selectively ripped off leaves of a liana with the common name Akar Kuning (*Fibraurea tinctoria*), chewed on them, and then repeatedly applied the resulting juice onto the facial wound. As a last step, he fully covered the wound with the chewed leaves. Found in tropical forests of Southeast Asia, this and related liana species are known for their analgesic, antipyretic, and diuretic effects and are used in traditional medicine to treat various diseases, such as dysentery, diabetes, and malaria. Previous analyses of plant chemical compounds show the presence of furanoditerpenoids and protoberberine alkaloids, View all journals

Q Search

Log in

Sign up for alerts \bigcirc

RSS feed

Next we simulate the contribution to $m_{b\ell}$ for each parameter space point using Pythia 8.3 [42] in the region of phase space identified by the following selection:

$$p_T(\ell) \ge 25 \text{ GeV}, \ |\eta(\ell)| < 2.5,$$

 $p_T(j) \ge 25 \text{ GeV}, \ |\eta(j)| < 2.5,$ (1)

for jets made with anti-kT [43] algorithm with R = 0.4and separations between jets and leptons $\Delta R(\ell, j) > 0.2$, $\Delta R(j, j) > 0.4$ and $\Delta R(\ell, \ell) > 0.1$. This is a selection closely following that of the experimental collaborations, e.g. [16, 18, 36], except for minor differences in the selection for $\ell = e$ and $\ell = \mu$ that we do not pursue. We have considered variations of the cuts and found

BM	$\mid \mu$	M_1	A_t	m_{χ^+}	m_{χ^0}	z [31]	z [16]	r
	$m_{\tilde{t}} = 200 \text{ GeV}$							
ON1	185	95	2820.5	186.6	85.6	[0.8, 1.7]	[2.7, 14.3]	0.9
OFF1	155	160	2857.5	156.4	123.3	[0.9, 1.8]	[2.6, 14.8]	0.7
OFF2	175	145	2839.5	176.6	123.5	[1.5, 3.]	[5.1, 25.5]	0.8
T1	135	65	2895.5	136.2	54.	$[4.,\!7.7]$	[10.7, 61.3]	0.8
T2	135	60	2895.5	136.2	49.9	[4.1, 7.9]	[10.8, 60.6]	0.8
	$m_{\tilde{t}} = 220 \text{ GeV}$							
OFF3	155	150	3140.5	156.4	118.6	[0.7, 1.4]	[1.9, 10.9]	0.8
OFF4	170	160	3122	171.5	130.8	[0.9, 1.8]	[2.5, 13.7]	0.6
ON2	190	95	3104	191.7	86.1	[2.1, 4.3]	[6.1, 32.8]	0.7
OFF5	190	145	3104	191.7	127.7	[1.4, 2.8]	[4.2, 22.5]	0.6
ON3	190	65	3104	191.7	58.9	[1.9, 3.7]	$[5.3,\!28.7]$	0.8
	$m_{\tilde{t}} = 180 \text{ GeV}$							
OFF6	165	115	2570.5	166.5	99.2	[1.2, 2.5]	[4.8, 22.9]	0.8
OFF7	160	105	2580	161.5	90.4	[2.2, 4.5]	[7.2, 36.3]	0.8
OFF8	160	170	2570	161.5	130.3	[0.6, 1.2]	[2.4, 11.2]	0.6
OFF9	155	150	2579.5	156.4	118.5	[1.6, 3.2]	$[5.3,\!27.2]$	0.8
OFF10	145	175	2598.5	146.3	122.2	[0.8, 1.6]	[2.4, 12.7]	0.8

TABLE I. Chargino and neutralino masses, input parameters μ , M_1 and A_t , all given in GeV for few benchmarks (BM). Resulting value of r computed from SModelS 2.2.1 and the range of the significance eq. (2) expected from the $m_{b\ell}$ spectrum analysis using ATLAS [16] or CMS [31] measurements. The low (high) end the significance range corresponds to uncertainties on the $m_{b\ell}$ spectrum before(after) a fit using SM predictions for the known backgrounds.