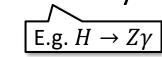
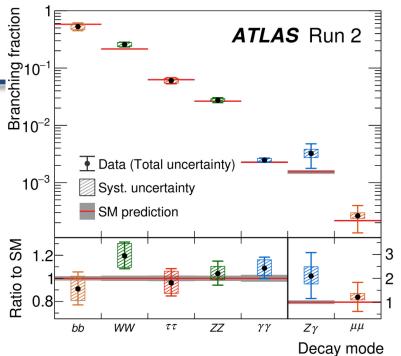

Search for rare Higgs boson decays and BSM Higgs bosons

Shigeki Hirose (U. Tsukuba) On behalf of the ATLAS and CMS Collaborations

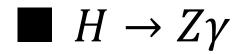

3rd June, 2024 Large Hadron Collider Physics Conference 2024

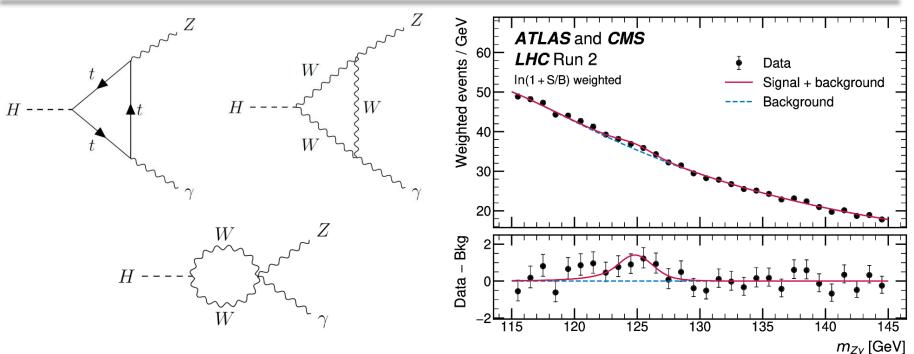


- Two large general purpose detectors
 - ATLAS: large size (D = 25 m) provides long lever arm
 - CMS: compact (D = 15 m) with a stronger solenoid field of 3.8 T
 - Both detectors are suitable to efficiently collect Higgs boson data with complementary performance
- Each experiment has accumulated data with \sim 12M Higgs bosons

Rare Higgs decays

- The abundant data allowed us to achieve observation of all the main Higgs decay channels
 - Branching ratios with 3rd-generation fermions and bosons are at $\sim 10\%$ precision
- Rarer channels such as 2nd bb generation or radiative decays are being possible
 - E.g. $H \rightarrow \mu\mu$




ATLAS arXiv:2404.05498

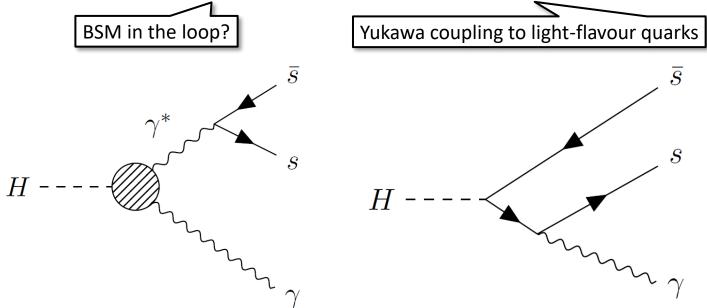
Also from CMS: Nature 607 (2022) 60 Rare decays may be sensitive to BSMs as its SM amplitude is

- suppressed
- Experimentally challenging
 - with attaining high signal efficiency

ATLAS and CMS, PRL 132 (2024) 021803

• Rare decay via a loop diagram

- BR($H \rightarrow Z\gamma$)_{SM} = (1.5 ± 0.1) × 10⁻³

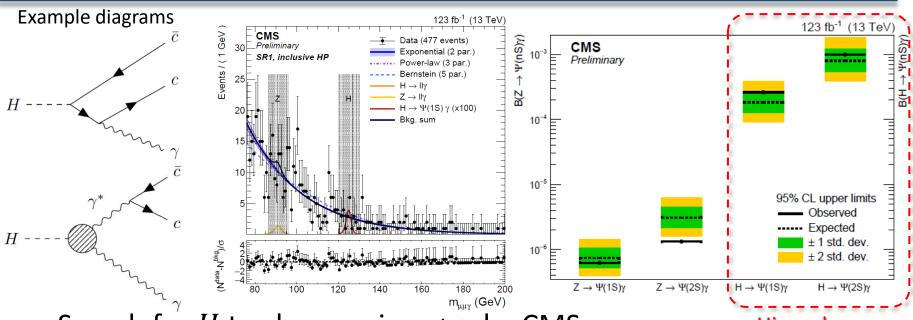

• ATLAS+CMS combination reached 3.4 $\sigma \rightarrow$ First evidence!

$$BR(H \rightarrow Z\gamma) = (3.4 \pm 1.1) \times 10^{-3}$$

Measured value is 2.2 times higher than the SM expectation

$\blacksquare H \to M\gamma: M = a \text{ meson}$

- Radiative Higgs boson decays containing a meson
 - Induced via a loop diagram or a direct coupling to lighter quarks



- Challenge to identify light quark flavours at ATLAS/CMS
 - No particle identification system \rightarrow Need to find a parent meson based on K/π 'hypothesis' (exceptions are decays to di-lepton)
 - Need to catch a relatively low- $p_{\rm T}$ single photon
 - → Dedicated triggers using γ with reduced $p_{\rm T}$ threshold + a few tracks

 $\blacksquare H \to J/\psi\gamma$

CMS, PAS-SMP-22-012 (2023)

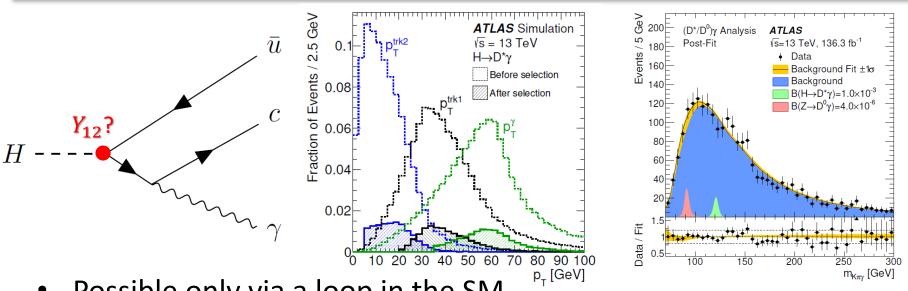
• Search for *H* to charmonium + γ by CMS

Higgs decays

- Sensitive to H-c coupling (the decay is also induced via a bosonic loop)
- In SM, the branching ratios are small
 - BR $(H \to J/\psi \gamma)$ = (3.01 ± 0.15) × 10⁻⁶
 - BR($H \to \psi(2S)\gamma$) = (1.03 ± 0.06) × 10⁻⁶
- Simultaneous search for Z to charmonium + γ

 $BR(H \rightarrow J/\psi\gamma) < 2.6 \times 10^{-4}, BR(H \rightarrow \psi(2S)\gamma) < 9.9 \times 10^{-4}$

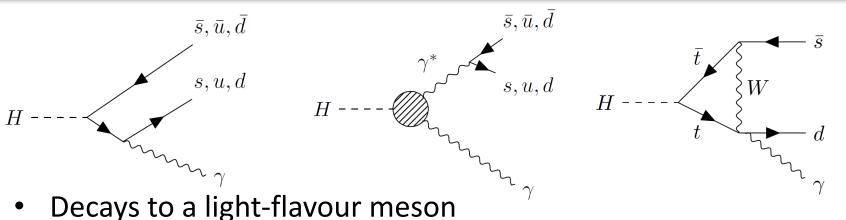
Similar results also from ATLAS: Eur. Phys. J. C 83 (2023) 781


Shigeki Hirose, The 12th edition of the Large Hadron Collider Physics Conference

 $\blacksquare H \to D^{*0} \gamma$

ATLAS, arXiv:2402.18731

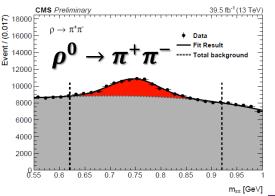
- Possible only via a loop in the SM
 - Very suppressed branching ratio in the SM: $\sim 5 \times 10^{-20}$
 - BSMs that allow FCNC may significantly enhance the branching ratio
- Search for $H \to D^{*0}\gamma$ (and $Z \to D^0\gamma$ and $K_S^0\gamma$) by ATLAS
 - D^{*0} reconstructed from $D^{*0} \rightarrow D^0(\pi^0, \gamma)$ followed by $D^0 \rightarrow K^- \pi^+$
 - Efficiently trigger the ' γ + two tracks' events (used from May 2016)


 $\mathsf{BR}(H \to D^{*0}\gamma) < 1.0 \times 10^{-3}$

Modified τ trigger algorithm

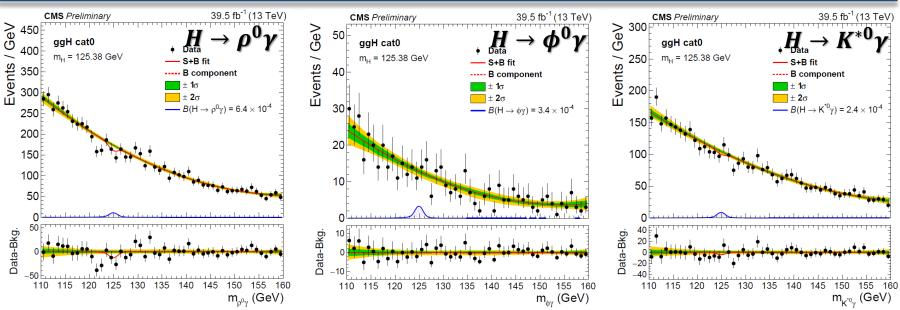
<u>7/23</u>

$\blacksquare H \to \rho^0 \gamma, \phi^0 \gamma, K^{*0} \gamma$



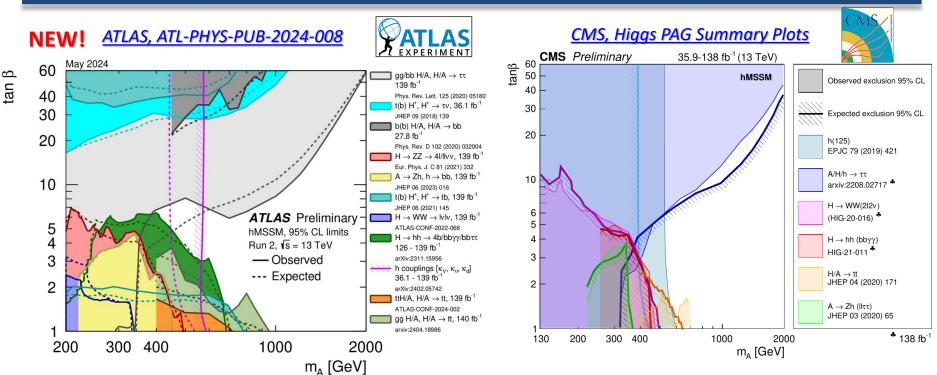
- $H \rightarrow \rho^0 \gamma, \phi^0 \gamma$: BR_{SM} at O(10⁻⁶ to 10⁻⁵) due to a large of
 - H → $\rho^0 \gamma$, $\phi^0 \gamma$: BR_{SM} at O(10⁻⁶ to 10⁻⁵) due to a large contribution from loop diagrams

$$- H \rightarrow K^{*0}\gamma : BR_{SM} = 1.0 \times 10^{-19}$$


- Triggers are important to efficiently catch signal events
 - VH: leptons from the weak boson decay 138 fb^{-1}
 - ggH and VBF: a photon + a few jets
 - $\gamma(E > 75 \text{ GeV}) + a \text{ VBF jet pair } 86.9 \text{ fb}^{-1}$
 - $\gamma(E > 35 \text{ GeV})$ + a ' τ -like' jet ($p_T > 35 \text{ GeV}$) having two tracks 39.5 fb⁻¹
- Mesons reconstructed using K/π hypothesis

8/23

$\blacksquare H \to \rho^0 \gamma, \phi^0 \gamma, K^{*0} \gamma$



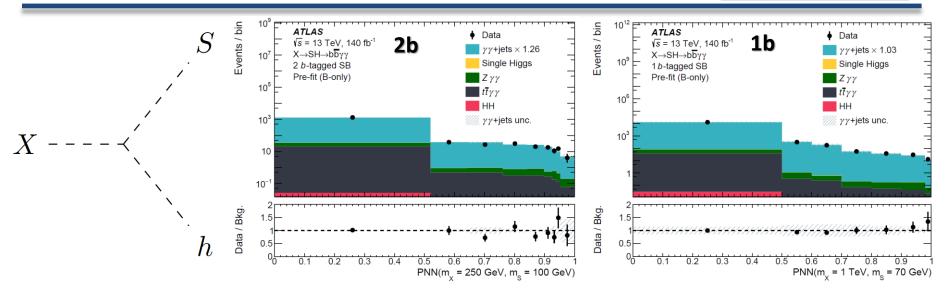
• Combining a photon to the meson, fit is performed to the invariant mass distributions

$$\begin{array}{l} \mathsf{BR}(H \to \rho^0 \gamma) < 3.7 \times 10^{-4} \quad \mathsf{BR}(H \to \phi^0 \gamma) < 3.0 \times 10^{-4} \\ \mathsf{BR}(H \to K^{*0} \gamma) < 1.7 \times 10^{-4} \end{array}$$

- The ggF category is most sensitive despite its lower integrated luminosity Similar results from ATLAS: <u>Phys. Lett. B 847 (2023) 138292</u> ($H \rightarrow \omega^0 \gamma, K^{*0} \gamma$) <u>JHEP 07 (2018) 127</u> ($H \rightarrow \phi^0 \gamma, \rho^0 \gamma$)

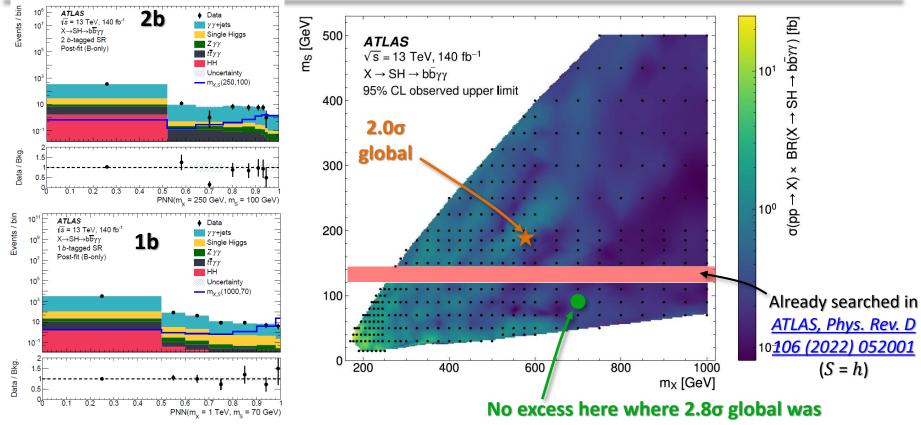
BSM Higgs bosons

- Several Higgs bosons can appear in extended Higgs models
 - Naive extension is 2HDM with one extra Higgs doublet
 - \rightarrow Five Higgs bosons appear: h, H, A, H^+, H^-
 - Variety of the extended models can be considered $\prod_{k=1}^{n}$
- Focus on recent heavy Higgs searches in this talk


Let me use consistent notation

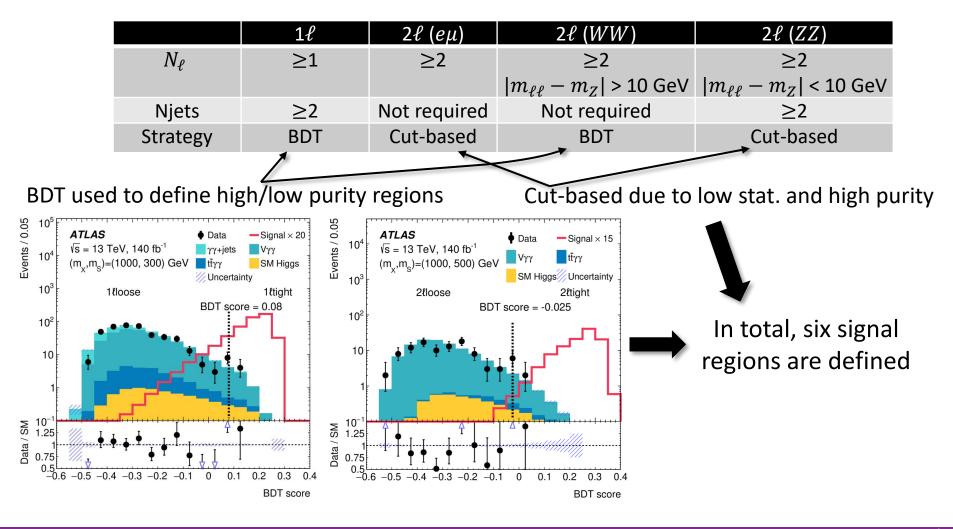
- *h* for 125 GeV Higgs boson
- S for extra scalar
- X for unknown parent

 $\blacksquare X \to Sh \to bb\gamma\gamma$


ATLAS, arXiv:2404.12915

- Search for new scalars X and S using $S \rightarrow bb$, $h \rightarrow \gamma \gamma$
 - They may appear in 2HDM + real scalar, NMSSM etc.
- Two regions defined
 - 2b: aim to fully detect two *b*-jets from $S \rightarrow bb$
 - 1b: only one of the *b*-jets is detected when $\Delta(m_X m_S)$ is large
- PNN is trained for fit variable
 - Good agreement with data in the $m_{\gamma\gamma}$ sidebands

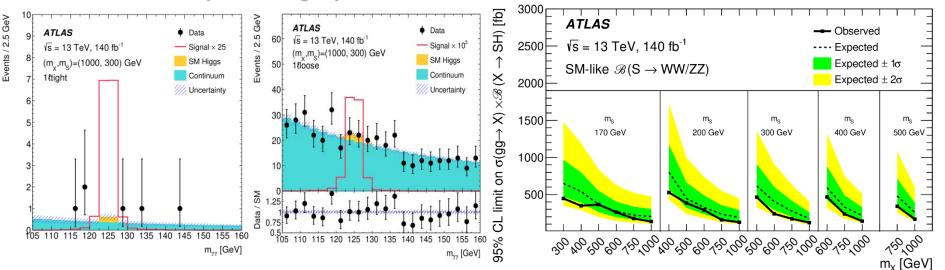
 $\blacksquare X \to Sh \to bb\gamma\gamma$


- No significant excess was found reported in <u>CMS, arXiv:2310.01643</u>
 - Upper limit set in the range up to \sim 1 TeV (500 GeV) for m_X (m_S)
 - Highest significance at $(m_X, m_S) = (575, 200)$ GeV [global 2.0 σ]
 - CMS previously reported an excess at $(m_X, m_S) = (650, 90)$ GeV [global 2.8 σ] but no excess was found in this analysis

$\blacksquare X \to Sh \to \text{multileptons} + \gamma\gamma \text{ NEW!}$

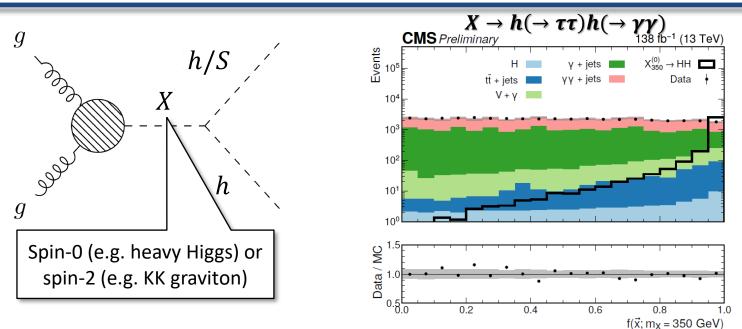
ATLAS, arXiv:2405.20926

- Search for $X \rightarrow Sh$ using different final state
 - − Target is $S \rightarrow VV \rightarrow \geq 1\ell$ + jets and $h \rightarrow \gamma\gamma$


03-Jun-2024

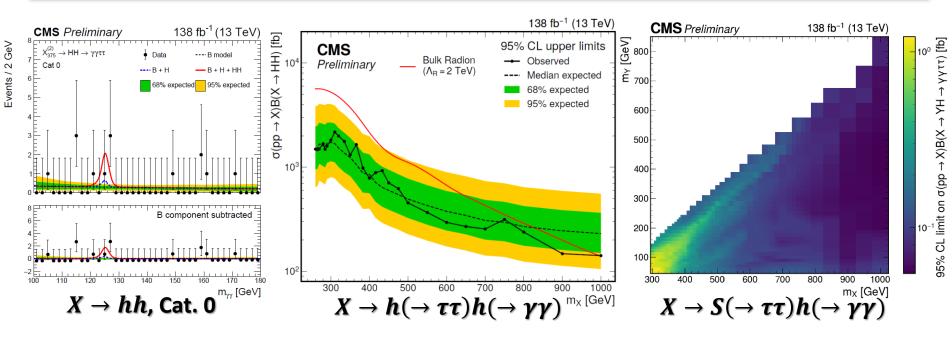
Shigeki Hirose, The 12th edition of the Large Hadron Collider Physics Conference

$\blacksquare X \to Sh \to \text{multileptons} + \gamma\gamma \text{NEW!}$


1 lepton category

- Fit performed with $m_{\gamma\gamma}$ distributions
 - No significant excess was observed
- Upper limits are set up to ~ 1 TeV (500 GeV) for m_X (m_S)
 - Other hypothesis are also tested in the paper: $BR(S \rightarrow WW) = 100\%$ or $BR(S \rightarrow ZZ) = 100\%$

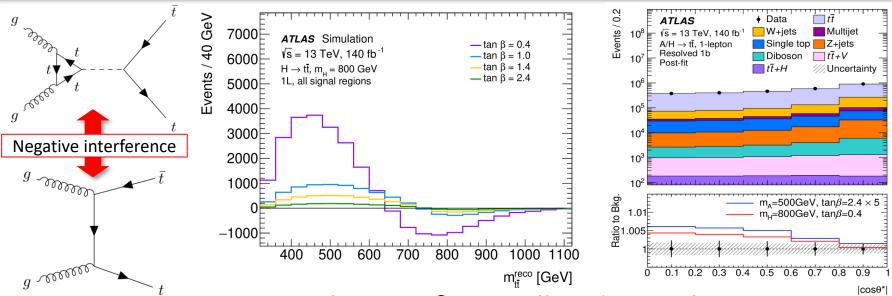
 $\blacksquare X \to (S,h)h \to \gamma\gamma\tau\tau$



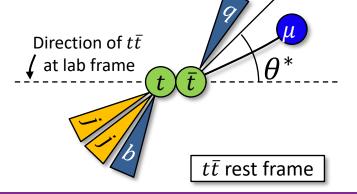
- Di-Higgs resonance search with $\gamma\gamma\tau\tau$ final state
 - One of h or S decays into $\gamma\gamma$ and the partner to $\tau\tau$
 - All di- τ final states are used: $\ell \ell' (\ell, \ell' = e, \mu)$, $\tau_{had} \ell$, $\tau_{had} \tau_{had}$
- PNN is used to separate signals from backgrounds
 - Training separately for $X \to h(\to \tau\tau)h(\to \gamma\gamma), X \to S(\to \tau\tau)h(\to \gamma\gamma), X \to S(\to \tau\tau)h(\to \tau\tau)$ [high mass S / low mass S]
 - Defined 10 SRs for each final state using PNN score

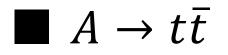
 $\blacksquare X \to (S,h)h \to \gamma\gamma\tau\tau$

CMS, PAS-HIG-22-012 (2024)



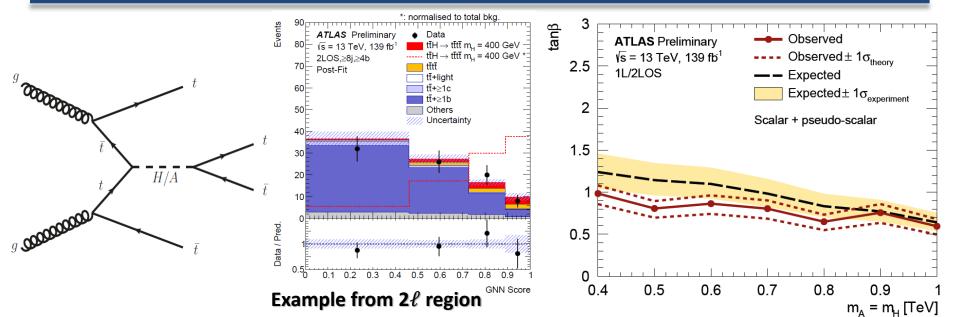
- Fit performed using $m_{\gamma\gamma}$
 - No significant excess found
- Various scenarios are tested in this analysis
 - Spin-2 X particle search
 - Non-resonant Higgs pair production
- Review of $X \rightarrow (S, h)h$ searches by CMS <u>arXiv:2403.16926</u>


$\blacksquare \ A \to t\bar{t}$

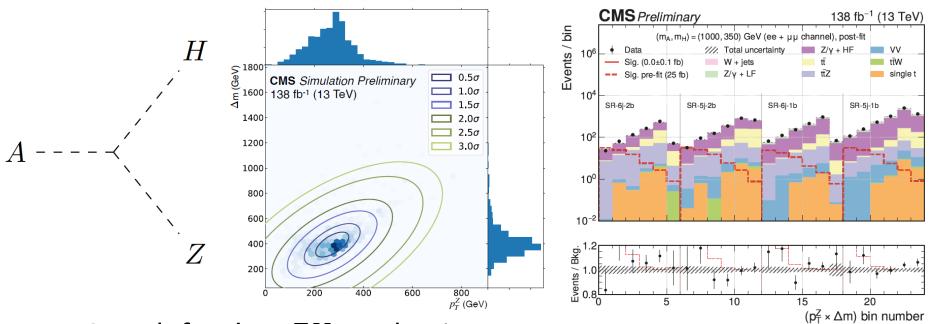


ATLAS, arXiv:2404.18986

- Large cross section when tan β is small and m_A is large
- Important to handle the interference properly
 - Characteristic peak-dip structure may appear
- Angular distribution is effective to separate signals (spin = 0) from $t\bar{t}$
 - Signal distributes flatter while $t\bar{t}$ populates around $|\cos\theta^*| \sim 1$
 - $\Delta \phi_{\ell\ell}$ is used for the di-lepton channel

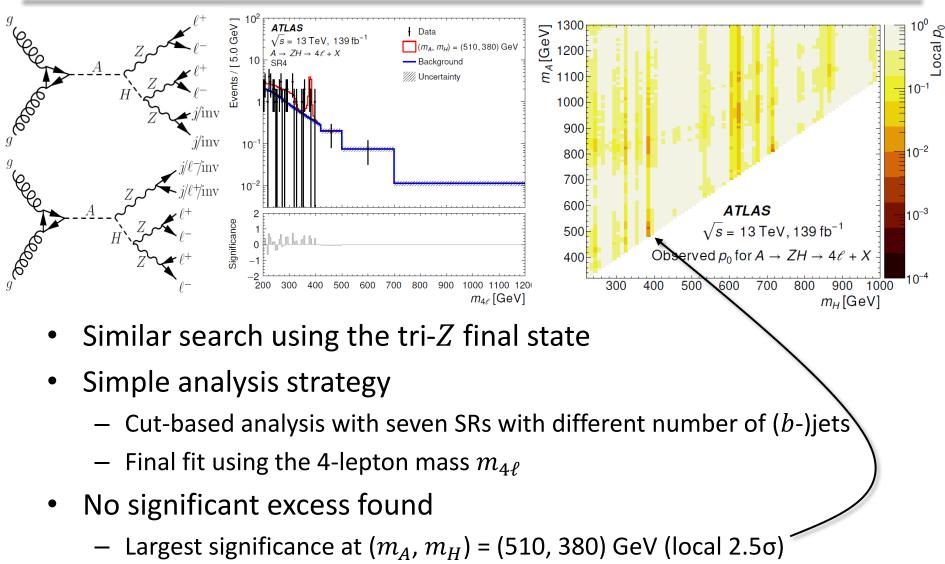

ATLAS, arXiv:2404.18986

 $t\bar{t}A \to t\bar{t}t\bar{t}$


ATLAS, CONF-2024-002 (2024)

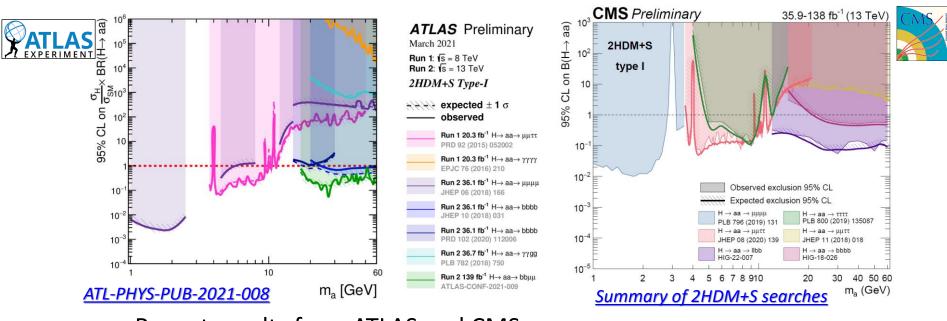
- Basic analysis strategy same as the 4-top search ATLAS, JHEP 11 (2021) 118
 - Improved analysis methods exploiting GNN
- Dominant background is $t\overline{t}$ + heavy flavour jets, which is difficult to model in MC
 - Careful modelling using flavour rescaling and NN-based reweighting
- No significant excess observed
 - Limit set up to $m_A \sim 1 \text{ TeV}$ at $an\beta$ = 0.5

 $\blacksquare A \to ZH, H \to tt$


- Search for $A \rightarrow ZH$ production
 - Large mass splitting between A and H allows first-order phase transition
 - − For m_H > 400 GeV, $H \rightarrow t\bar{t}$ becomes dominant
- Construct fit discriminant using $\Delta m = m_{t\bar{t}Z} m_{t\bar{t}}$ and p_{T}^Z
 - Six bins are defined for each SR using the 'x- σ ' ellipses
- No significant excess was found
 - Limit up to $m_A \sim 1$ TeV is set (for the case of 2HDM-II)

$\blacksquare A \to ZH, H \to ZZ$

ATLAS, arXiv:2401.04742



[N.B. ~5,000 mass points are scanned in this analysis]

Light BSM Higgs(-like) bosons

- Light pseudo-scalar boson (a) appears in e.g. 2HDM + S
 - ATLAS/CMS search for the *a* boson using various final states

Recent results from ATLAS and CMS:

- $h \rightarrow aa \rightarrow \gamma\gamma\gamma\gamma$: <u>ATLAS, arXiv:2312.03306</u>
- $h \rightarrow Za, a \rightarrow \gamma\gamma$:

ATLAS, Phys. Lett. B 848 (2024) 138536

- Model independent $aa \rightarrow \mu\mu\mu\mu$: <u>CMS-PAS-HIG-21-004</u>
 - $H \rightarrow aa \rightarrow bbbb$ using VH:

<u>CMS, arXiv:2403.10341</u>

22/23

See talks by I. Riu (ATLAS) and A. Malara (CMS) on Thursday!

Shigeki Hirose, The 12th edition of the Large Hadron Collider Physics Conference

Summary

- ATLAS and CMS have been collecting data for >10 years
 - Statistics accumulated by each experiment corresponds to ~12M Higgs bosons as of today
- I introduced various interesting results using Run 2 data
 - Higgs rare decays with 1st / 2nd generation flavours
 - BSM searches targeting 2HDM and various extended Higgs models
- More data are important!
 - Statistics will be 3x larger by the end of Run 3 (w.r.t. Run 2)
 - Observation of $H \rightarrow \mu\mu$, confirmation of $H \rightarrow Z\gamma$ excess, ...
 - Wider searches for extra Higgs bosons (not only heavy ones but also lighter scalars)

Various analyses using Run 2+3 data are ongoing!