Precision top quark physics

Stefan Kallweit

12th Edition of the Large Hadron Collider Physics Conference Boston, USA, June 3–7, 2024 Introduction

Associated top-quark pair production at the LHC

Disclaimer

subjective selection of results, without the attempt to cover the full field of *precision top quark physics*

➡ focus on recent fixed-order predictions for associated top-quark pair production

Outline

Introduction

Ingredients for precision calculations on (associated) top-pair production

- NLO corrections in full Standard Model
- subtraction of IR singularities at NNLO QCD
- ${\scriptstyle \bullet}$ towards two-loop amplitudes for massive 2 \rightarrow 3 processes

Recent results on (associated) top-pair production

- $t\bar{t}\gamma(\gamma)$ in dilepton decay channel using NWA in full NLO SM
- $t\bar{t}Z$ in dilepton decay channel with full off-shell decays in full NLO SM
- $t\bar{t}H$ at NNLO QCD (approximated 2-loop amplitudes)
- $t\bar{t}W^{\pm}$ at NNLO QCD (approximated 2-loop amplitudes)
- towards $t\bar{t}$ off-shell at NNLO QCD (approximated 2-loop amplitudes)

Conclusions & Outlook

Full NLO Standard Model (SM) corrections in associated heavy-quark pair production

• Partonic channels enter at different orders:

- gg at LO₁, $g\gamma$ at LO₂, $\gamma\gamma$ at LO₃ (only neutral FS)
- $q\bar{q}$ at LO₁ (QCD), LO₃ (EW), and LO₂ (interference)
- NLO1 and NLO4 genuine QCD and EW corrections, respectively
- NLO₂ and NLO₃ in general not unique EW or QCD corrections
- NLO₃ enhancements due to opening of new real topologies

• sample NLO₂ virtual correction

- \rightarrow EW to LO₁ and QCD to LO₂
- sample NLO₃ real correction

enhanced tZ-scattering topologies

q_{T} subtraction method for associated heavy-quark pair production at NNLO QCD

Extension of $q_{\rm T}$ subtraction method to production of heavy coloured particles ($F = Q\bar{Q}, \ Q\bar{Q}X$, etc.)

$$d\sigma_{F}^{\text{NNLO}} = \mathcal{H}_{F}^{\text{NNLO}} \otimes d\sigma_{\text{LO}} + \left[d\sigma_{F+\text{jet}}^{\text{NLO}} - d\sigma_{F,\text{CT}}^{\text{NNLO}} \right]_{\text{cut}_{\text{qr}}} \rightarrow$$

• basic idea: $\left. d\sigma_{\rm F}^{\rm NNLO} \right|_{q_{\rm T} \neq 0} = \left. d\sigma_{\rm F+jet}^{\rm NLO} \right|_{{\rm with known singular } q_{\rm T}} \rightarrow 0$ behaviour (from $q_{\rm T}$ resummation), which is used to construct a non-local counterterm [Catani, Grazzini (2007)]

- built upon subtraction method for colourless *F*, extended to deal with soft final-state singularities [Bozzi, Catani, de Florian, Grazzini (2006), Catani, Grazzini (2007), Catani, Cieri, de Florian, Ferrera, Grazzini (2013)]
 - counterterm $d\sigma_{F,CT}^{NNLO}$ accounts for IR behaviour of real contribution, including soft singularities related to emissions from final-state quarks [Catani, Grazzini, Torre (2014), Ferroglia, Neubert, Pecjak, Yang (2009), Li, Li, Shao, Yang, Zu (2013)]
 - massive NLO subtraction required for real-emission part $d\sigma_{F+jet}^{NLO}$, e.g. massive dipole subtraction [Catani, Seymour (1927), Catani, Dittmain, Seymour, Treesand (2022)]
 - \mathcal{H}_{NNL0}^{F} contains, besides 2-loop amplitudes and compensation for subtraction of counterterm, remainder of integrated final-state soft singularities
 - known for heavy-quark pairs [Catani, Devoto, Grazzini, Mazzitelli (2023), Angeles-Martinez, Czakon, Sapeta (2018)]
 - more involved kinematics for associated heavy-quark pair production [Devoto, Mazzitelli (to appear)]

🗁 talk by S. Devoto

Amplitudes for heavy coloured particle production at NNLO QCD

2-loop amplitudes for on-shell $t\bar{t}$ production

numerically: qq̄ [Czakon (2008)] and gg [Bärnreuther, Czakon, Fiedler (2014)] Channels, also polarized [Chen, Czakon, Poncelet (2017)]
 analytically in leading colour: qq̄ [Bonciani, Ferroglia, Gehrmann, Studerus (2009)] and gg [Badger, Chaubey, Hartanto, Marzucca (2021)]
 analytically, in full colour: qq̄ [Mandal, Mastrolia, Ronca, Bobadilla Torres (2022)]

2-loop amplitudes for 2 \rightarrow 3 production processes with massless quarks

- analytically, in leading colour: $b\bar{b}H$ [Badger, Hartanto, Kryś, Zoia (2021)]
- analytically, in leading colour: $bar{b}W$ [Badger, Hartanto, Zoia (2021), Abreu, Cordero, Ita, Klinkert, Page, Sotnikov (2022)]
- analytically, in leading colour: $b\bar{b}Z$ [Sotnikov, Mazzitelli, Wiesemann ('24)]

Recent publications/preprints on developments towards $t\bar{t}H$ 2-loop amplitudes \rightarrow hot topic!

- Two-Loop Master Integrals for Leading-Color pp \rightarrow t $\overline{t}H$ Amplitudes with a Light-Quark Loop [Cordero, Figueiredo, Kraus, Page, Reina ('23)]
- One loop QCD corrections to $gg o t\bar{t}H$ at $\mathcal{O}(\epsilon^2)$ [Buccioni, Kreer, Liu, Tancredi (2024)]
- On the high-energy behavior of massive QCD amplitudes [Wang, Xia, Yang, Ye (2024)]
- Two-loop amplitudes for tTH production: the quark-initiated Nf-part [Agarwal, Heinrich, Jones, Kerner, Klein, Lang, Magerya, Olsson (2024)]
- Two-loop QCD amplitudes for tTH production from boosted limit [Wang, Xia, Yang, Ye ('24)]

Theory status of $pp ightarrow t ar{t} \gamma(\gamma) + X$

- NLO QCD for on-shell production (tt
) [Duan, Guo, Han, Ma, Wang, Zhang (2009 & 2011), Maltoni, Pagani, Tsinikos (2016)]
- NLO EW for on-shell production $(t\bar{t}\gamma)$ [Duan, Li, Song, Wang, Zhang (2017)]
- NLO SM for on-shell production $(t\bar{t}\gamma(\gamma))$ [Pagani, Shao, Tsinikos, Zaro (2021)]
- NLO+NNLL for on-shell production $(tar{t}\gamma)$ [Kidonakis, Tonero (2023)]
- NLO+PS for on-shell production $(t\bar{t}\gamma)$ [Kardos, Trócsányi (2015)]

 $(t\bar{t}\gamma\gamma)$ [Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro (2014), Kardos, Trócsányi (2015), van Deurzen, Frederix, Hirschi, Luisoni, Mastrolia, Ossola (2016)]

• NLO QCD for NWA production with leptonic decays $(t\bar{t}\gamma)$ [Melnikov, Schulze, Scharf (2011)] with leptonic and lepton+jet decays $(t\bar{t}\gamma(\gamma))$ [Stremmer, Worek (2023)]

- NLO QCD for off-shell production with leptonic decays $(t\bar{t}\gamma)$ [Bevilacqua, Hartanto, Kraus, Weber, Worek (2018 & 2020)]
- NLO SM for NWA on-shell production with leptonic decays $(tar{t}\gamma(\gamma))$ [Stremmer, Worek ('24)]

$pp \rightarrow t\bar{t}\gamma(\gamma) + X$ production in NWA with leptonic decays at NLO SM

Calculational details

talk by D. Stremmer

- Implementation in HELACDIPOLES MC program [Czakon, Papadopoulos, Worek (2009)]
- phase space integration with PARNI [van Hameren (2009)] and KALEU [van Hameren ('10)]
- amplitudes generated with RECOLA [Actis, Denner, Hofer, Scharf, Uccirati (2013), Actis, Denner, Hofer, Lang, Scharf, Uccirati (2017)], tensor reduction and scalar integrals from COLLIER [Denner, Dittmaier, Hofer (2017)]; **dp rescue system** based on CUTTOOLS [Ossola, Papadopoulos, Pittau (2007 & 2008)] with ONELOOP scalar integrals [van Hameren (2011)]
- Nagy-Soper subtraction for QCD and QED singularities [Bevilacqua, Czakon, Kubocz, Worek (2013)] extended to NWA [Bevilacqua, Lupattelli, Stremmer, Worek (2023)]
- phase space restrictions on subtraction terms [Nagy, Trócsányi (1999), Nagy (2003), Bevilacqua, Czakon, Papadopoulos, Pittau, Worek (2009), Czakon, Hartanto, Kraus, Worek (2015)]

Composition of photon emissions $(t\bar{t}\gamma\gamma)$

 $\sigma/d\Delta R_{e^{-1}}$

 $p_{T,\gamma_1\gamma_2}$

Breakdown of subleading NLO SM contributions to $pp \rightarrow t\bar{t}\gamma\gamma + X$

		σ_i [fb]	Ratio to LO ₁
LO_1	$O(\alpha_s^2 \alpha^6)$	$0.15928(3)^{+31.3\%}_{-22.1\%}$	1.00
LO_2	$O(\alpha_s^1 \alpha^7)$	$0.0003798(2)^{+25.8\%}_{-19.2\%}$	+0.24%
LO_3	$\mathcal{O}(\alpha_s^0\alpha^8)$	$0.0010991(2)^{+10.6\%}_{-13.1\%}$	+0.69%
NLO_1	$\mathcal{O}(\alpha_s^3 \alpha^6)$	+0.0110(2)	+6.89%
NLO_2	$O(\alpha_s^2 \alpha^7)$	-0.00233(2)	-1.46%
NLO_3	$O(\alpha_s^1 \alpha^8)$	+0.000619(1)	+0.39%
NLO_4	$\mathcal{O}(\alpha_s^0\alpha^9)$	-0.0000166(2)	-0.01%
LO		$0.16076(3)^{+30.9\%}_{-21.9\%}$	1.0093
NLO _{QCD}		$0.1703(2)^{+1.9\%}_{-6.2\%}$	1.0690
$\rm NLO_{prd}$		$0.1694(2)^{+1.7\%}_{-5.9\%}$	1.0637
NLO		$0.1700(2)^{+1.8\%}_{-6.0\%}$	1.0674

 NLO1 inevitable (scale dependence)

 NLO₄ phenomenologically irrelevant

- NLO₂ dominant among subleading NLO terms inclusively; EW Sudakov logarithms in high-energy tails of distributions
- partial (accidental) cancellations between NLO₂ and NLO₃ (less pronounced for $t\bar{t}\gamma\gamma$ than for $t\bar{t}\gamma$)
- NLO_{prd} (subleading NLO corrections only to decay stage) provides very good approximation of full NLO result

Theory status of $pp ightarrow t\bar{t}Z + X$

- NLO QCD for on-shell production [Lazopoulos, McElmurry, Melnikov, Petriello (2008), Kardos, Trócsányi, Papadopoulos (2012)]
- NLO SM for on-shell production [Frixione, Hirschi, Pagani, Shao, Zaro (2015), Frederix, Frixione, Hirschi, Pagani, Shao, Zaro (2021)]
- NLO+PS for on-shell production [Maltoni, Pagani, Tsinikos (2016), Garzelli, Kardos, Papadopoulos, Trócsányi (2012 & 2012)]
- NLO+NNLL for on-shell production [Broggio, Ferroglia, Ossola, Pecjak, Sameshima (2017), Kulesza, Motyka, Schwartländer, Stebel, Theeuwes (2019 & 2020)]
- NLO+NNLL plus NLO SM for on-shell production [Broggio, Ferroglia, Frederix, Pagani, Pecjak, Tsinikos (2019)]

- NLO QCD for NWA production with leptonic decays [Röntsch, Schulze (2014 & 2015)]
- NLO+PS for NWA production with leptonic decays [Ghezzi, Jäger, Chavez, Reina, Wackeroth (2022)]
- NLO QCD for off-shell production with leptonic decays $(2\ell 2\nu)$ [Bevilacqua et al. (2019)] (4ℓ) [Bevilacqua et al. (2022)]
- NLO SM for off-shell production with leptonic decays [Denner, Lombardi, Pelliccioli (2023)]

Off-shell $pp \rightarrow t\bar{t}Z + X$ production with leptonic decays at NLO SM

Calculational details

- phase space integration with MOCANLO (private code)
- amplitudes generated with RECOLA [Actis, Denner, Hofer, Scharf, Uccirati (2013), Actis, Denner, Hofer, Lang, Scharf, Uccirati (2017)], tensor reduction and scalar integrals from COLLIER [Denner, Dittmaier, Hofer (2017), Denner, Dittmaier (2003 & 2006 & 2012)]
- dipole subtraction for QCD and QED singularities [Catani, Seymour (1997), Dittmaier (2000), Catani, Dittmaier, Seymour, Trócsányi (2002), Dittmaier, Kabelschacht, Kasprzik (2008)]
- resonance treatment through complex-mass scheme [Denner, Dittmaier, Roth, Wackeroth (1999), Denner, Dittmaier, Roth, Wieders (2005 & 2012), Denner, Dittmaier (2006, 2020)]

Pattern of typical transverse-momentum distributions

- NLO1 necessary to stabilize scale dependence; size depends on scale choice, which mostly affects LO1
- NLO₂ shows typical negative corrections due to Sudakov logarithms in the tail: predominantly an NLO EW correction
- subleading orders (LO₂, LO₃, NLO₃) at the percent level

 $p_{T,\tau^+\tau^-} = p_{T,Z}$

[JHEP 09 (2023) 072]

Breakdown of contributions for off-shell $pp \rightarrow t\bar{t}Z + X$ in NLO SM

perturbative order	$\sigma_{\rm nob}$ [ab]	$\frac{\sigma_{ m nob}}{\sigma_{ m nob, LO_1}}$	$\sigma_{\rm b}$ [ab]	$\frac{\sigma_{\rm b}}{\sigma_{\rm nob,LO_1}}$	σ [ab]	$\frac{\sigma}{\sigma_{\rm LO_1}}$
LO_1	$107.246(5)^{+35.0\%}_{-24.0\%}$	1.0000	0.31378(9)	+0.0029	$107.560(5)^{+34.9\%}_{-23.9\%}$	1.0000
LO_2	$0.7522(2)^{+11.1\%}_{-9.0\%}$	+0.0070	-0.6305(2)	-0.0059	0.1217(3)	+0.0011
LO_3	$0.2862(1)^{+3.4\%}_{-3.4\%}$	+0.0027	0.7879(2)	+0.0073	$1.0742(3)^{+12.1\%}_{-14.9\%}$	+0.0100
NLO_1	-11.4(1)	-0.1072	0.518(3)	+0.0048	-10.9(1)	-0.1016
NLO_2	-0.89(1)	-0.0083	0.109(3)	+0.0010	-0.78(1)	-0.0072
NLO_3	1.126(4)	+0.0105	-0.089(4)	-0.0008	1.037(6)	+0.0096
NLO_4	-0.0340(9)	-0.0003	-0.0180(9)	-0.0002	-0.052(1)	-0.0005
$\rm LO_1 + \rm NLO_1$	$95.8(1)^{+0.4\%}_{-11.2\%}$	+0.8933	0.832(3)	+0.0078	$96.6(1)^{+0.4\%}_{-10.7\%}$	+0.8984
LO	$108.285(5)^{+34.7\%}_{-23.8\%}$	+1.0097	0.4713(3)	+0.0044	$108.756(5)^{+34.5\%}_{-23.7\%}$	+1.0111
LO+NLO	$97.0(1)^{+0.5\%}_{-11.2\%}$	+0.9052	0.991(6)	+0.0092	$98.0(1)^{+0.4\%}_{-10.6\%}$	+0.9114

- LO₂ small due to cancellation of $g\gamma$ channel and $b\bar{b}$ -induced interference; at large p_T , $g\gamma$ dominates, exceeding even LO₃ contribution
- NLO₁ with large K-factors and LO-like scale uncertainties in $p_{T,b\bar{b}}$ tail
- partial cancellation between NLO₂ and NLO₃; tiny NLO₄ effect

Theory status of $pp \rightarrow t\bar{t}H + X$

- NLO QCD for on-shell production [Beenakker, Dittmaier, Krämer, Plumper, Spira, Zerwas (2001 & 2003), Reina, Dawson (2001), Reina, Dawson, Wackeroth (2002), Reina, Dawson, Wackeroth, Jackson, Orr (2001 & 2003)]
- NLO SM for on-shell production [Frixione, Hirschi, Pagani, Shao, Zaro (2015)]
- NLO+PS for on-shell production [Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli (2011), Garzelli, Kardos, Papadopoulos, Trócsányi (2011), Hartanto, Jäger, Reina and Wackeroth (2015)]
- NLO+NNLL for on-shell production [Kulesza, Motyka, Stebel, Theeuwes (2016), Broggio, Ferroglia, Pecjak, Signer, Yang (2016), Broggio, Ferroglia, Pecjak, Yang (2017)]
- NNLO QCD for on-shell production [Catani, Fabre, Grazzini, SK (2021), Catani, Devoto, Grazzini, SK, Mazzitelli, Savoini (2023)]

- NLO EW for NWA production with leptonic decays [Chen, Guo, Ma, Zhang, Zhang (2014)]
- NLO QCD for off-shell production with leptonic decays [Denner, Feger (2015), Stremmer, Worek (2022)]
- NLO EW for off-shell production with leptonic decays [Denner, Lang, Pellen, Uccirati (2017)]

On-shell $pp \rightarrow t\bar{t}H + X$ production at NNLO QCD

Calculational details

- Implementation in the MATRIX framework [Grazzini, SK, Wiesemann (2018)]
- amplitudes from OPENLOOPS [Cascioli, Maierhöfer, Pozzorini (2012), Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller (2019)] using on-the-fly tensor reduction [Buccioni, Pozzorini, Zoller (2018)] and scalar integrals from COLLIER [Denner, Dittmaier, Hofer (2017)]
- q_T slicing combined with dipole subtraction
- full calculation exact, apart from 2-loop amplitudes
- Soft Higgs boson approximation $(k
 ightarrow 0, m_H \ll m_t)$

 $\mathcal{M}_{t\bar{t}H}(\{p_i\},k)\simeq F(\alpha_s(\mu_R);\frac{m_t}{\mu_R})\mathcal{J}_0(k)\mathcal{M}_{t\bar{t}}(\{\tilde{p}_i\})$

- F soft limit of scalar heavy-quark form factor [Bernreuther et al. (2005), Blümlein et al. (2017)] • $\mathcal{J}_0(k) = \frac{m_t}{v} \left(\frac{m_t}{p_t \cdot k} + \frac{m_t}{p_t^{-} \cdot k} \right)$ eikonal factor • $\mathcal{M}_{t\bar{t}} gg/q\bar{q} \rightarrow t\bar{t}$ amplitude [Bärnreuther et al. (2014)]
- reweighting with full Born amplitude applied

Validation of soft-Higgs approximation at NLO

- Ambiguities in soft approximation approach
 - projection from ttH to tt phase space
 choice of approximation scale
- performance at 1-loop level and ambiguities used to derive a conservative error estimate

NNLO QCD results for on-shell $pp \rightarrow t\bar{t}H + X$ production

		[P	RL 130, 1119	02 (2023)]		
σ (pb)	$\sqrt{s} = 13$	TeV	$\sqrt{s} =$	= 100 TeV		
$\sigma_{\rm LO}$	$0.3910^{+31.3\%}_{-22.2\%}$		25.38	25.38+21.1%		
$\sigma_{\rm NLO}$	$0.4875^{+5.6\%}_{-9.1\%}$		36.43 ^{+9.4%} -8.7%			
$\sigma_{\rm NNLO}$	$0.5070(31)^{+0.9\%}_{-3.0\%}$		$37.20(25)^{+0.1\%}_{-2.2\%}$			
	$\sqrt{s} = 13 \text{ TeV}$		$\sqrt{s} = 100 \text{ TeV}$			
σ (fb)	gg	$q\bar{q}$	gg	$q\bar{q}$		
$\sigma_{ m LO}$	261.58	129.47	23055	2323.7		
$\Delta \sigma_{\text{NLO},H} \\ \Delta \sigma_{\text{NLO},H} _{\text{soft}}$	88.62 61.98	7.826 7.413	8205 5612	217.0 206.0		
$\Delta \sigma_{\text{NNLO},H} _{\text{soft}}$	-2.980(3)	2.622(0)	-239.4(4)	65.45(1)		

- significant reduction of perturbative uncertainties (max. of 7-point scale variation, assigned symmetrically)
- error estimate due to soft approximation much smaller
 - \Rightarrow only ±0.6% of $\sigma_{\rm NNLO}$

- same error estimate applied differentially looks reasonable as well
- further studies ongoing, including alternative approximations ...

Theory status of $pp ightarrow t ar{t} W^{\pm} + X$

🧉 🗳 🤌

- NLO QCD for on-shell production [Badger, Campbell, Ellis (2011)]
- NLO SM for on-shell production [Frixione, Hirschi, Pagani, Shao, Zaro (2015), Frederix, Pagani, Zaro (2018)]
- NLO+NNLL for on-shell production [Li, Li, Li (2014), Broggio, Ferroglia, Ossola, Pecjak (2016), Kulesza, Motyka, Schwartländer, Stebel, Theeuwes (2019)]
- NLO+NNLL plus NLO SM [Broggio, Ferroglia, Frederix, Pagani, Pecjak, Tsinikos (2019)] +N³LL [Kidonakis, Foster (2024)]
- NLO SM for on-shell production with multi-jet merging [Frederix, Tsinikos (2021)]
- NNLO QCD plus NLO SM for on-shell production [Buonocore, Devoto, Grazzini, SK, Mazzitelli, Rottoli, Savoini (2023)]

- NLO QCD for NWA production with leptonic decays [Campbell, Ellis (2012)]
- NLO QCD for off-shell production with leptonic decays [Bevilacqua, Bi, Hartanto, Kraus, Worek (2020), Denner, Pelliccioli (2020), Bevilacqua, Bi, Hartanto, Nasufi, Kraus, Worek (2021)]
- NLO QCD+EW for off-shell production with leptonic decays [Denner, Pelliccioli (2021)]

On-shell $pp \rightarrow t\bar{t}W^{\pm} + X$ production at NNLO QCD

Calculational details

talk by S. Devoto

- MATRIX implementation, as for $t\bar{t}H$ at NNLO QCD
- full calculation exact, apart from 2-loop amplitudes
 - use two complementary approximations
- 1. Soft W boson approximation $(k
 ightarrow 0, m_W \ll m_t)$
 - analogous approach as for $t\bar{t}H$
- 2. Massification approach $(m_t \ll Q_{t \bar{t} W})$ [Mitov, Moch (2007)]
 - use massless $Wq\bar{q}$ amplitudes [Badger et al. (2021), Abreu et al. (2022)] and reconstruct m_q dependence (up to power corrections)
 - successfully applied in MATRIX for Wbb production
 [Buonocore, Devoto, SK, Mazzitelli, Rottoli, Savoini (2023)]
 - reweighting with full Born amplitude applied
 - error estimate derived similarly to soft approximation

- Validate the two approximations in a phase space region where both should work: large p_{T,t/t}
 NLO: both converge against exact result NNLO: the two approximations agree well within errors
 - average with linearly combined errors as best prediction (improvements under investigation)

NNLO QCD results for on-shell $pp \rightarrow t\bar{t}W^{\pm} + X$ production

	$\sigma_{t\bar{t}W^+}$ [fb]	$\sigma_{t\bar{t}W^-}$ [fb]	$\sigma_{t\bar{t}W}$ [fb]	$\sigma_{t\bar{t}W^+}/\sigma_{t\bar{t}W^-}$
LO _{QCD}	$283.4^{+25.3\%}_{-18.8\%}$	136.8+25.2%	$420.2^{+25.3\%}_{-18.8\%}$	$2.071^{+3.2\%}_{-3.2\%}$
NLO _{QCD}	$416.9^{+12.5\%}_{-11.4\%}$	$205.1^{+13.2\%}_{-11.7\%}$	$622.0^{+12.7\%}_{-11.5\%}$	$2.033^{+3.0\%}_{-3.4\%}$
NNLO _{QCD}	$475.2^{+4.8\%}_{-6.4\%}\pm1.9\%$	$235.5^{+5.1\%}_{-6.6\%}\pm1.9\%$	$710.7^{+4.9\%}_{-6.5\%}\pm1.9\%$	$2.018^{+1.6\%}_{-1.2\%}$
$NNLO_{QCD} + NLO_{EW}$	$497.5^{+6.6\%}_{-6.6\%}\pm1.8\%$	$247.9^{+7.0\%}_{-7.0\%}\pm1.8\%$	$745.3^{+6.7\%}_{-6.7\%}\pm1.8\%$	$2.007^{+2.1\%}_{-2.1\%}$
ATLAS [11]	$585^{+6.0\%}_{-5.8\%}$	$301^{+9.3\%}_{-9.0\%}$ $^{+11.6\%}_{-10.3\%}$	$890^{+5.6\%}_{-5.6\%}$ $^{+7.9\%}_{-7.9\%}$	$1.95^{+10.8\%}_{-9.2\%}$ $^{+8.29}_{-6.7\%}$
CMS [10]	$553^{+5.4\%}_{-5.4\%}~^{+5.4\%}_{-5.4\%}$	$343^{+7.6\%}_{-7.6\%}~^{+7.3\%}_{-7.3\%}$	$868^{+4.6\%}_{-4.6\%}~^{+5.9\%}_{-5.9\%}$	$1.61^{+9.3\%}_{-9.3\%}~^{+4.3\%}_{-3.1\%}$

- ullet positive NNLO corrections: pprox+15% of $\sigma_{
 m NLO}$
- ullet sizeable impact of 2-loop contribution: pprox 6 7% of $\sigma_{
 m NNLO}$
- approximation error estimate: pprox 1.8% of $\sigma_{
 m NNLO}$
 - smaller than perturbative uncertainties at NNLO: pprox 6.7%
- compatible with FxFx result: $\sigma_{FxFx} = 722.4 \text{ fb}_{-10.8\%}^{+9.7\%}$

Comparison against ATLAS [ATLAS-CONF-2023-019] and CMS [JHEP 07 (2023) 219] data

 $\sigma_{
m ttW^{*}[fb]}$

Agreement remains at the 1σ (ATLAS) and 2σ (CMS) level, respectively.

(ATLAS result superseeded by [JHEP 05 (2024) 131] : $\sigma_{t\bar{t}W} = 880 \pm 50 (\text{stat.}) \pm 70 (\text{syst.}) \text{ fb}$)

Stefan Kallweit (UZH

Theory status of $pp ightarrow t ar{t} + X$

- NNLO QCD for on-shell production [Czakon, Fiedler, Mitov (2013), Czakon, Heymes, Mitov (2016 & 2016 & 2017), Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Sargsyan (2019), Catani, Devoto, Grazzini, Kallweit, Mazzitelli (2019 & 2020)]
- NNLO QCD+NLO SM for on-shell production [Czakon, Heymes, Mitov, Pagani, Tsinikos, Zaro (2017 & 2018)]
- NNLO+NNLL' for on-shell production [Czakon, Ferroglia, Heymes, Mitov, Pecjak, Scott, Wang, Yang (2018)] +N³LL [Kidonakis, Guzzi, Tonero (2023)]
- NNLO+PS for on-shell production [Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi (2021 & 2022)]

- NNLO QCD for NWA production with leptonic decays [Czakon, Mitov, Poncelet (2021)]
- NLO QCD for off-shell production with leptonic decays [Denner, Dittmaier, SK, Pozzorini (2011 & 2012), Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek (2011)], with $m_b \neq 0$ [Frederix (2014), Cascioli, SK, Maierhöfer, Pozzorini (2014)], +1jet [Bevilacqua, Hartanto, Kraus, Worek (2016 & 2016)] and with semileptonic decays [Denner, Pellen (2018)]
- NLO QCD+EW for off-shell production with leptonic decays [Denner, Pellen (2016)]
- NLO+PS for off-shell production with (semi-)leptonic decays [Jezo, Lindert, Nason, Oleari, Pozzorini (2016), Jezo, Lindert, Pozzorini (2023)]
- towards NNLO QCD for off-shell production [Buonocore, Devoto, Grazzini, SK, Lindert, Mazzitelli, Savoini (in progress)]

Off-shell $pp \rightarrow t\bar{t} + X$, i.e. $pp \rightarrow W^+W^-b\bar{b} + X$, at NNLO QCD

Calculational details

- MATRIX implementation, as for any $Q\bar{Q}X$ process at NNLO QCD, but numerically challenging ...
- full calculation exact, apart from 2-loop amplitudes
 - use a double-pole approximation (DPA)
- validation against the $t\bar{t}$ cross section in NWA, by numerically taking the limit $\Gamma_t \rightarrow 0$

NLO results: exact and full DPA available

- perfect agreement of results achieved with
 exact 1-loop amplitude
 - full DPA (fact. and non-fact. corrections) with $t\bar{t}$ result in NWA in the limit $\Gamma_t \to 0$
- full DPA reproduces exact result very well at physical Γ_t : only $\approx 4\%$ difference on $\Delta \sigma_{\rm NLO}$ • apply DPA also at NNLO QCD

[Buonocore, Devoto, Grazzini, SK, Lindert, Mazzitelli, Savoini (preliminary)]

Contributions from off-diagonal channels for off-shell $pp \rightarrow t\bar{t} + X$ at NNLO QCD

NNLO results: off-diagonal channels

- full calculation exact, no approximation required
- non-trivial double extrapolation to get result for on-shell limit: $\operatorname{cut}_{q_T} \to 0$ and $\Gamma_t \to 0$
- validation through agreement with on-shell result
 - numerical complexity of relevant contributions comparable to diagonal channels

NNLO results: diagonal channels

- full calculation exact, apart from 2-loop amplitudes
- $\operatorname{cut}_{q_T} \to 0$ behaviour under good control
 - crucial check of our slicing method
- 2-loop amplitudes approximated in DPA
 - factorizable corrections widely validated
 - non-factorizable corrections not available yet
- not ready to present results yet ...

[Buonocore, Devoto, Grazzini, SK, Lindert, Mazzitelli, Savoini (preliminary)]

Conclusions & Outlook

NLO SM corrections to associated top-quark production with decays

• off-shell calculations available (or at least feasible) for up to $2 \rightarrow 8$ scattering processes

- typically dominated by NLO QCD (LO1+NLO1) prediction and the leading EW corrections (NLO2)
- enhancement of subleading contributions possible, e.g. due to opening of new topologies
- calculations also important in order to judge if subleading terms can eventually be neglected

NNLO QCD corrections to associated top-quark production

- first inclusive results available for $t\bar{t}H$ and $t\bar{t}W^{\pm}$ on-shell production with approximated 2-loop amplitudes
 - more detailed studies, also on differential level
 - similar strategies might be applicable also for other processes of this class
- ${\scriptstyle \bullet }$ 2-loop amplitudes for 2 ${\rightarrow }$ 3 processes are a very active field
 - ➡ first results with exact (at least leading-colour) amplitudes presumably not in the too far future (?)

New developments on top-quark pair production

- off-shell tt production at NNLO QCD with 2-loop amplitudes in DPA looks promising ...
- recent progress towards $t\bar{t}j$ amplitudes [Badger et al. ('24)]: maybe NNLO QCD for $t\bar{t}j$ feasible soon (?)