Overview of ATLAS upgrade projects for HL-LHC

Yasu Okumura

(UTokyo, ICEPP)

On behalf of the ATLAS collaboration

ATLAS upgrade overview

Upgrade of Muon system

- <u>Additional trigger layers of RPC</u> and replacement of MDT with sMDT in barrel inner station
- Additional TGC layers in endcap inner station
- Upgrade trigger/readout electronics

Forward detector

• Upgrade Luminosity Detector (LUCID) and Zero Degree Calorimeter (ZDC) to cope with the higher rate environment (detailed discussion in poster session)

Upgrade of Trigger and DAQ

• L0 trigger at 1 MHz with 10 μs latency, 10 kHz Event Filter output

Upgrade of Calorimeter

• <u>Electronics upgrade</u> for LAr and Tile calorimeters

New High Granularity Timing Detector (HGTD)

- Additional pileup suppression with timing information
- Forward region (2.4 < $|\eta|$ < 4.0)
- Low-Gain Avalanche Detectors (LGAD) with 30ps time resolution
- Contributions to luminosity measurement

New Inner Tracking Detector (ITk)

- Full silicon tracker covering up to eta = 4 with at least 9 layers on individual tracks
- Less material, finer segmentation

٠

This talk reviews general features, and the latest status for the production and integration

Inner Tracker (ITk)

[mm

General features

- <u>Complete replacement</u> of the current Inner
 Detector with new silicon Pixel & Strip sensors
 - 13 m^2 of silicon in Pixels, 168 m^2 in Strips.
 - Note: Current ID 2.7m² pixel, 8.2m² strip
- Larger angular coverage up to η =4, at least <u>9</u>
 <u>silicon layers on individual tracjectories</u>
- Higher Radiation tolerant requirement up to 1 x 10¹⁶ n_{eq}/cm²
- <u>Reduced materials</u>

ATL-PHYS-PUB-2021-024 (Run3 detector paper plots)

Material comparison between current ID and ITk

Inner Tracker (ITk)

Tracking performance with the ITk

ITk pixel

- General features:
 - Organized as <u>three systems</u> (inner, outer, outer endcaps).
 - Features of sensors:
 - Different pixel sizes for layers
 - 25 x 100 μ m² (innermost barrel)
 - 50 x 50 μ m² (everywhere else).
 - 3D sensors in innermost barrel/disks and planar sensors in the other layers.
 - In total, more than 1.4×10^9 channels.
 - Inner system replaceable for radiation damage
- Production status:
 - Pre-production of sensors (3D/planar) have been complete
 - Production of FE ASIC is begin started
 - Hybridization is in progress along with thermal tests

Outer endcap half ring prototype

Outer barrel demonstrator @ CERN

Loaded inner ring prototype

ITk strip

• General features:

- <u>4-layer barrel</u> and two <u>6-layer endcaps disks</u>
- Angular coverage of |η| < 2.7 with 18,000 modules.
- Strip width ~75 μ m.
- 60 x 10⁶ channels

Production status:

- First staves/petals are loaded
- ASIC testing is almost complete
- <u>Sensor production</u> in progress as planed
- Extensive studies involving thermal cycling of the modules on-going
- Construction of large-scale structure in progress
 - Outer cylinder arrived at CERN
 - L3 cylinder at CERN, L2 expected to be at CERN this month
 - Installation of L3 and L2 cylinders into outer cylinder will start in July

Progress with ITk large-scale structures

Module-loaded staves

High Granularity Timing Detector (HGTD) 7/16

General feature

- Completely new detector to be inserted between ITk and endcap calorimeter
 - <u>Mitigate pile-up with hit-timing</u> information
 - Especially in the high eta region where the vertex position separation is limited
 - 2.4<|η|<4.0, 12<R<64cm.
- Four layers of <u>LGAD modules</u> to achieve a good timing resolution
 - <u>70 ps per hit</u> and <u>30-50 ps per track</u>
- Pixel size of LGAD is $1.3 \times 1.3 \text{ mm}^2$

HGTD

8/16

- Pileup rejection performance with HGTD
 - Additional rejection of pileup jets with timing information
 - Improved track-based isolation, removing PU track contribution

HGTD

Project status

- ASIC preproduction (ALTIROC-A) have been launched after extensive testing of prototype (ALTIROC3) in lab and test beam
- Tests of <u>hybridization with pre-production LGAD</u>
 <u>sensors and prototype ASIC</u> shows good performance
- First prototype of the Peripheral Electronics Board (PEB) being tested in <u>assembled demonstrator</u>
- Careful assessment of assembly with mock-up

Mock-up to assess assembly

PEB and demonstrator

Calorimeter

- Liquid Argon Calorimeter (LAr)
 - Upgrade both on- and off-detector electronics
 - Continuous readout at 40 MHz.
 - Total bandwidth of <u>345 Tbps</u>.
 - New high precision frontend electronics
 - 16-bit dynamic range with nonlinearity < 0.1 % up to 300 GeV
 - Electronics noise < MIP energy
 - 128-ch Front End Board (FEB2)
 - <u>ATCA blade</u> for waveform feature extraction (LAr Signal Processor)
 - Hosts ~33k links at 10 Gbps
 - Status
 - Custom LAr-specific ASICs in production
 - FEB2v2 prototype fabricated and assemble
 - Off Detector prototype boards becoming available

FEB2v2

LASP-TEST board at EMF

Calorimeter

• Tile Calorimeter:

- <u>Replacement of all electronics</u> to fulfill the Phase-2 readout and trigger specification
 - Digital trigger with improved precision and full radial granularity
 - Higher data bandwidth with 40 MHz readout
- Reassemble and upgrade PMT blocks
 - Active HV divider
 - Replacement of the most exposed PMTs (about 10%).
- New frontend mainboard
- New TileCal PreProcessor (PPr) ATCA blade (CPM, Carrier, RTM) is being developed
- Status
 - Frontend mainboards have arrived at CERN,
 - Phase-2 demonstrator installed in ATLAS and is taking data
 - Off detector electronics are on the Final Design stage

Muon

General features

- Replacement of electronics
- Barrel Inner station upgrade
 - New triplet RPC layers
 - sMDT in small sectors
- El TGC upgrade
 - Replacing doublet TGC with triplet TGC
- Project status
 - sMDT production complete
 - Many of electronics components are in production phase
 - · Activities at cavern are being extended
 - First new EI TGC sectors to be installed in YETS 24-25 to sort out potential problems
 - "Dry run campaign" of electronics instllation
 - <u>Demonstrator</u> of electronics installed in P1

TGC chamber production

Mockup installation

Demonstrator in cavern

Muon

Testing and integration at test facilities

Trigger DAQ

Phase II TDAQ specifications •

- LOA rate 1 MHz with 10us latency
- EF output rate 10 kHz
- Estimated event size of 4.6 MB

L0 Trigger

- Prototyping and testing
- Integration tests are ramping up:
 - Communication tests between subsystems are being conducted
 - Demonstration of functionalities in system-level tests

Example of system-level demonstration Phase-2 TTC distribution tests to check phase reproducibility

normalized phase (ps)

Trigger DAQ

Data Acquisition

- Phase 2 system is designed as high-speed DAQ with high throughput network
 - The prototyping for high throughput network is in progress
- FELIX prototype testing is on going
- Test campaigns at P1 was conducted in the last YETS
 - Specifically for <u>dataflow part</u> and online software components
 - Performance close to requirements
- Event Filter
 - Demonstrators mostly progressing well and on track
 - Very good progress on GPU and FPGA support in ATLAS software (Athena)
 - Final demonstrator phase later this year for EF track, that will provide input for the hardware technology choice in 2025

Event

Filter

Conclusion

- To cope with the demanding conditions of HL-LHC, ATLAS will undergo a major upgrade in the next long shutdown LS3 starting 2025 right after Run3 ends
 - New detector components:
 - ITk, a new all-silicon tracker with an improved coverage up to $|\eta|$ <4.
 - HGTD, an LGAD based timing detector for pileup mitigation with additional precise timing information
 - New muon chambers of sMDT, TGC, RPC
 - Electronics upgrades:
 - LAr and Tile calorimeters and muon systems upgrading cope with HL-LHC trigger and readout specification with extended bandwidth and enhanced computing power
 - TDAQ upgrades:
 - L0 trigger system upgrade at 1 MHz L0 rate and
 - High throughput networking using the cutting edge electronics and computing architectures.
- Phase-II upgrade activities continually progress into production
- The phase of testing, integration, and planning for the installation is starting
- Significant effort for software in both online EF and offline reconstruction
 - Covered in "Software upgrades for HL-LHC"