

- ALICE is designed to study the quark-gluon plasma produced in heavy-ion collisions at the LHC
- Two main physics items driving the upgrade strategy: •
 - **Heavy flavour (HF)** transport and hadronization in the medium: \bullet differential measurements of hadron production (suppression, enhancement, flow...) down to vanishing p_{T}
 - **Electromagnetic radiation** from the medium: dileptons below the J/ψ mass down to zero p_T : mapping the evolution of the collision
- \Rightarrow High-granularity, low-mass detector with continuous readout to access untriggerable signals with very low S/B

M. van Leeuwen — ALICE status and overview F. Jonas — Heavy-ion physics at the HL-LHC experiments

ALICE Upgrade Roadmap

The Forward Calorimeter (FoCal)

- **FoCal-E:** a compact silicon-tungsten sampling electromagnetic calorimeter with pad (1 x 1 cm²) and pixel (30 x 30 µm²)
 - High spatial resolution for discriminating between isolated photons and decay photon pairs
- **FoCal-H:** hadronic calorimeter constructed from copper capillary tubes filled with scintillating fibres
 - Photon isolation, energy and jet measurements
- Coverage: $3.2 < \eta < 5.6$

Front view of a FoCal-H module in simulation

FoCal — Physics Goals

- Search for evidence of gluon saturation due to non-linear PDF evolution in QCD in nucleons and nuclei at low Bjorken-x down to $\sim 10^{-6}$
- Constrain nuclear PDFs
- Broad phase-space coverage while providing a multi-messenger approach
 - \rightarrow Comprehensive exploration of saturation, complementary to other LHC experiments and to EIC

Wide set of experimental observables:

- Isolated (direct) photons
- π^0 and other neutral mesons
- Jets
- Vector mesons in UPC $(J/\psi, \Upsilon, ...)$
- Correlations (γ -hadron, hadron-hadron, ...)
- ... and more

Physics of the ALICE Forward Calorimeter upgrade: ALICE-PUBLIC-2023-001 Physics performance of the ALICE Forward Calorimeter upgrade: <u>ALICE-PUBLIC-2023-004</u>

FoCal — Test Beams

ALI-PERF-569144

FoCal-H

FoCal-E Pads

- 18 layers Si pad sensors
- wafers of 9 x 8 cm²
- pad size 1 cm²
- readout with HGCROC v2

FoCal-E Pixels

- 2 ALPIDE pixel layers
- Monolithic Active Pixel Sensors
- pixel size of ~30 x 30 µm²
- two tested prototypes (HIC,pCT)

FoCal-H

- 9 Cu-scintillating fiber modules
- towers size ~ $6.5 \times 6.5 \text{ cm}^2$
- length ~110 cm
- readout with CAEN DT5202

Longitudinal shower profile in FoCal-E

ALI-PERF-569144

FoCal-H

FoCal-E Pads

- 18 layers Si pad sensors
- wafers of 9 x 8 cm²
- pad size 1 cm²
- readout with HGCROC v2

FoCal-E Pixels

- 2 ALPIDE pixel layers
- Monolithic Active Pixel Sensors
- pixel size of ~30 x 30 µm²
- two tested prototypes (HIC,pCT)

FoCal-H

- 9 Cu-scintillating fiber modules
- towers size ~ 6.5 x 6.5 cm²
- length ~110 cm
- readout with CAEN DT5202

Resolution < 15% at high energies, data/MC discrepancy under investigation

FoCal-H

FoCal-E Pads

- 18 layers Si pad sensors
- wafers of 9 x 8 cm²
- pad size 1 cm²
- readout with HGCROC v2

FoCal-E Pixels

- 2 ALPIDE pixel layers
- Monolithic Active Pixel Sensors
- pixel size of ~30 x 30 µm²
- two tested prototypes (HIC,pCT)

FoCal-H

- 9 Cu-scintillating fiber modules
- towers size ~ 6.5 x 6.5 cm²
- length ~110 cm
- readout with CAEN DT5202

Resolution < 15% at high energies, data/MC discrepancy under investigation

D. Colella — Large area monolithic pixel detectors

The Inner Tracking System 3 (ITS3)

- Replacement of ITS2 Inner Barrel with 3 layers of curved 50 µm thick wafer-scale MAPS
- Air cooling and ultra-light mechanical supports
- Reduced material budget of 0.09% X₀ instead of 0.36% X₀ per layer
- Smaller radius of the innermost layer: 19 mm instead of 23 mm

ITS3 TDR — CERN-LHCC-2024-003

ITS2 Inner Barrel

ITS3 Engineering Model 1

ALICE Upgrades | LHCP 2024 | Boston, June 2024 | Felix Reidt (CERN)

ITS3 — Physics Impact

- DCA resolution improved by a about a factor of $2 \rightarrow$ improved separation of secondary vertices
- Many fundamental observables strongly profiting or becoming in reach
 - Charmed and beauty baryons
 - Low-mass di-electrons
 - Full topological reconstruction of B_s

ITS3 physics performance studies: ALICE-PUBLIC-2023-002

ITS3 — Stitched Wafer-Scale MAPS — Current Results

Engineering Run 1 wafer with various dies

Monolithic Stitched Sensor (MOSS)

- First stitched MAPS for high-energy physics
- 10 Repeated Sensor Units (RSUs) stitched together: 259 mm x 14 mm per sensor
- 2 pixel pitches (18 μm and 22.5 μm) and 5 front-end variants, a total of 6.72 MPixel per chip
- Chip is **operational** and reaches **full efficiency**
- Yield currently being studied in detail, main failure mechanism expected to be mitigated in the next submission

ITS3 — Stitched Wafer-Scale MAPS — Next Steps

- Design of the final **full size**, **full functionality** sensor called MOSAIX is ongoing
 - Modular design:
 - Sensor divided into 5 segments (allowing to use 3, 4 or 5 segments for layers 0, 1 and 2, respectively)
 - Each segment is constituted of 12 Repeated Sensor Units (RSUs)
 - Each RSU is divided in turn into 12 fully independent tiles (powering, control and readout)
 - Interfacing from the Left End Cap (LEC) and Right End Cap (REC)
 - Powering from both sides
 - Control and readout from the LEC only
 - <u>Yield target</u>: >98% of pixels active
 - Submission to foundry planned for fall 2024

ALICE Upgrades | LHCP 2024 | Boston, June 2024 | Felix Reidt (CERN)

ALICE 3

				e. Colella – Bufalino 2. van Veer	Large are not determined in the second se	Absorb Magn	hic pixel de le identification and per	ECAL RICH RICH File RICH File RICH File RICH File File RICH File File File File File File File File
					ALICE 3	3		
		LHC LS4		Lŀ Ru	IC n 5		LHC LS5	LH Rur
031 20	032 203	3 2034	2035	2036	2037	2038	2039	2040

ALICE 3 — Concept

Novel and innovative detector concept

- Compact, low-mass all-silicon tracker
- Retractable vertex detector
- Excellent vertex reconstruction and **PID capabilities**
- Large acceptance
- Super conduction magnet system
- Continuous read-out and online processing

FCT

ALICE 3 — Vertex Detector (VD)

- **Pointing resolution** $\propto r_0 \cdot \sqrt{x/X_0}$ (multiple scattering regime)
 - Radius and material of first layer crucial
 - Minimal radius given by required aperture: $R \approx 5 \text{ mm at top energy},$ $R \approx 15$ mm at injection energy \rightarrow retractable vertex detector
- Key detector characteristics
 - 3 detection layers (barrel + disks)
 - Retractable: $r_0 = 5 \text{ mm}$
 - Material budget: 0.1% X₀ / layer
 - Unprecedented spatial resolution: **2.5 µm** \bullet
- Main R&D challenges
 - Light-weight in-vacuum mechanics and cooling
 - Radiation hardness* (10¹⁶ 1 MeV n_{eq}/cm^2 + 300 Mrad)
 - Pixel pitch of 10 µm
- R&D will build upon ITS3 experience

^{*} LOI values, further simulation studies ongoing

ALICE 3 — Vertex Detector (VD)

- Pointing resolution $\propto r_0 \cdot \sqrt{x/X_0}$ (multiple scattering regime)
 - Radius and material of first layer crucial
 - Minimal radius given by required aperture:
 R ≈ 5 mm at top energy,
 R ≈ 15 mm at injection energy
 → retractable vertex detector
- Key detector characteristics
 - 3 detection layers (barrel + disks)
 - Retractable: $r_0 = 5 \text{ mm}$
 - Material budget: 0.1% X₀ / layer
 - Unprecedented spatial resolution: 2.5 μm
- Main R&D challenges
 - Light-weight in-vacuum mechanics and cooling
 - Radiation hardness* (10¹⁶ 1 MeV n_{eq}/cm² + 300 Mrad)
 - Pixel pitch of 10 μm
- R&D will build upon ITS3 experience

^{*} LOI values, further simulation studies ongoing

ALICE 3 — Vertex Detector (VD)

- Pointing resolution $\propto r_0 \cdot \sqrt{x/X_0}$ (multiple scattering regime)
 - Radius and material of first layer crucial
 - Minimal radius given by required aperture:
 R ≈ 5 mm at top energy,
 R ≈ 15 mm at injection energy
 → retractable vertex detector
- Key detector characteristics
 - 3 detection layers (barrel + disks)
 - Retractable: $r_0 = 5 \text{ mm}$
 - Material budget: 0.1% X₀ / layer
 - Unprecedented spatial resolution: 2.5 μm
- Main R&D challenges
 - Light-weight in-vacuum mechanics and cooling
 - Radiation hardness* (10¹⁶ 1 MeV n_{eq}/cm² + 300 Mrad)
 - Pixel pitch of 10 μm
- R&D will build upon ITS3 experience

^{*} LOI values, further simulation studies ongoing

ALICE 3 — Tracking detectors (Middle Layers and Outer Tracker)

• Relative $p_{\rm T}$ resolution \propto

$$\frac{\sqrt{x/X_0}}{B \cdot L}$$

(limited by multiple scattering)

- Integrated magnetic field crucial
- Overall material budget critical

Key detector characteristics

- 8 barrel layers (3.5 cm < R < 80 cm)
- 2 x 9 forward disks
- Total surface: ~ 60 m²
- Material budget: 1% X₀ / layer
- Spatial resolution: 10 µm / 50 µm pixel pitch
- Low power consumption: 20 mW/cm²
- 100 ns time resolution

Main R&D challenges

- Module design for high yield industrial mass production
- Low power consumption while maintaining timing performance

ALICE 3 — Particle Identification

Tin	ne of Flight	O/\1
• 7	Time resolution target: 20 ps	0.8
• [ow material budget 1-3% X ₀ /layer	0.6
• 7	Total surface: ~45 m ²	0.4
• F 	 R&D streams: SiPM coated with different resins (type, thickness) Single and double LGADs 50 µm thick CMOS-LGAD (ARCADIA / MADPIX) 	0.2 0
RIC • E	CH Extending shared particle PID to higher <i>p</i> ⊤	Time Resolution (ps) 0 20 09 00
• /	Aerogel radiator - n = 1.03 (barrel) - n = 1.006 (forward)	30 20
• 7 • F	Total SiPM area: ~ 35 m ² R&D challenge: SiPM radiation hardness	10 1

TOF test beam results

F. Carnesecchi et al. Eur. Phys. J. Plus 138, 99 (2023)

F. Carnesecchi et al. Eur. Phys. J. Plus 138, 990 (2023)

ALICE 3: Muon and Photon ID

Muon IDentification (MID) at central rapidity

- Optimised for charmonia reconstruction down to zero p_T
- ~ 70 cm steel hadron absorber
- 2 layers with 5 x 5 cm² pad size
- Baseline: plastic scintillator bars w/ wave-length shifting fibres + SiPMs
- Options: RPCs or MWPCs
- Test beam results: <u>R. Alfaro et al. JINST 19 (2024) 04, T04006</u>

Large acceptance Electromagnetic Cal (ECal)

- 2π coverage
- Sampling calorimeter, O(100) layers of 1 mm Pb + 1.5 mm plastic scintillator
- PbWO₄-based high energy-resolution segment

Forward Conversion Tracker (FCT)

- Thin tracking disks in 4 < η < 5 in a dedicated dipole magnet
- Very low p_T photons (< 10 MeV/c)

ALICE Upgrades | LHCP 2024 | Boston, June 2024 | Felix Reidt (CERN)

Schematic drawing of the FCT

Dielectrons

- High-precision measurements of dileptons, also multi-differentially
- Understanding **time evolution** of QGP temperature (thermal dileptons) and mechanisms of chiral symmetry restoration

Dielectrons

- High-precision measurements of dileptons, also multi-differentially
- Understanding **time evolution** of QGP temperature (thermal dileptons) and **mechanisms** of **chiral symmetry restoration**

Heavy flavour transport

- Use hadronic observables to address quark transport in the QGP
- Higher **beauty** mass \rightarrow slower thermalisation, e.g. smaller v_2
- $D\overline{D}$ angular decorrelation directly probes QGP scattering

ALICE Upgrades | LHCP 2024 | Boston, June 2024 | Felix Reidt (CERN)

Dielectrons

- **High-precision measurements** of dileptons, also multi-differentially
- Understanding **time evolution** of QGP temperature (thermal dileptons) and mechanisms of chiral symmetry restoration

Heavy flavour transport

- Use hadronic observables to address quark transport in the QGP
- Higher **beauty** mass \rightarrow slower thermalisation, e.g. smaller v_2
- DD angular decorrelation directly probes QGP scattering

Hadron formation

- Multi-charm baryons unique probe for hadron formation
 - Require **combination** of multiple **independently produced charm quarks**
- Statistical hadronisation model: very large enhancement (x100-1000) in Pb-Pb
 - Characteristic relation between n-charm state yields (g_c^n)

ALICE Upgrades | LHCP 2024 | Boston, June 2024 | Felix Reidt (CERN)

Dielectrons

- **High-precision measurements** of dileptons, also multi-differentially
- Understanding **time evolution** of QGP temperature (thermal dileptons) and mechanisms of chiral symmetry restoration

Heavy flavour transport

- Use hadronic observables to address quark transport in the QGP
- Higher **beauty** mass \rightarrow slower thermalisation, e.g. smaller v_2
- DD angular decorrelation directly probes QGP scattering

Hadron formation

- Multi-charm baryons unique probe for hadron formation
 - Require **combination** of multiple **independently produced charm quarks**
- Statistical hadronisation model: very large enhancement (x100-1000) in Pb-Pb
 - Characteristic relation between n-charm state yields (g_c^n)

And many more:

Exotica, nuclei, hadron-hadron interaction potentials, net-baryon fluctuations, ultrasoft photons, ...

ALICE Upgrades | LHCP 2024 | Boston, June 2024 | Felix Reidt (CERN)

Summary

- ALICE has an ambitious upgrade program, targeting to further our understanding of the QGP in particular with precise measurements of heavy flavour and electromagnetic radiation
- LS3 (2026-2028): new upgrades for LHC Run 4 approaching construction phase
 - FoCal: γ , π^0 , jets in the forward region to constrain the gluon nPDF at low x
 - **ITS3**: ultra-thin, truly cylindrical, wafer-scale MAPS: improved secondary vertex reconstruction
- **Beyond Run 4: ALICE 3** to fully exploit the HL-LHC as a heavy-ion collider until Run 6
 - Novel, silicon-based detector concept

 - Enabling precision measurements of dileptons, (multi-)heavy-flavour hadrons and hadron correlations

– **Pioneering** several **R&D** directions with broad impact on future HEP experiments (e.g. FCC-ee)

Extra material

ALICE 3 timeline

		2023		2024 2025			2026 2027						20)28		2029			2030				2031				2032				2033			3 2								
	Run 3						LS3											Run 4																	LS4							
	Q1 (Q2 Q3	Q4	Q1	Q2 Q	3 Q4	Q1	Q2 (3 Q4	Q1	Q2	Q3 (Q4	Q1 Q	2 Q.	3 Q4	Q	1 Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3 (Q4 C	21 (Q2
ALICE 3	So Doo WG	copin cume is kic	ng ent, koff	Selection of technologies, R&D, concept prototypes					R&D, TDRs, engineered prototypes						Construction									Contingency an precommission					nd ing	d Install ng comn				io sic								

- **2026-27**: large-scale engineered prototypes (~75% of R&D funds) \rightarrow TDRs and MoUs
- **2028-30**: construction and testing
- 2031-32: contingency and pre-commissioning
- **2033-34**: preparation of cavern, installation

2023-25: Scoping Document, selection of technologies, small-scale prototypes (~25% of R&D funds)

