

The 12th Large Hadron Collider Physics Annual Conference June 3-7, 2024 @ Northeastern University http://lhcp2024.cos.northeastern.edu

Particle production and collectivity from small to large collision systems

A. Dobrin (Institute of Space Science – INFLPR subsidiary) alexandru.florin.dobrin@cern.ch

for the LHC Collaborations

Lattice QCD: quark-gluon plasma (QGP)

- Heating + compression \rightarrow quark–gluon plasma (QGP): deconfined system of quarks and gluons
- Lattice QCD: transition expected to occur at energy density ε~0.5 GeV/fm³ and temperature T~156 MeV
 - Conditions achieved in laboratory by colliding heavy ions

06/07/24

A. Dobrin - LHCP24

Pressure gradients (larger in the x direction) push bulk "out" \rightarrow "flow"

More particles seen in the x-direction

• Anisotropic flow: initial spatial anisotropy → final momentum anisotropy via collective interactions

Pressure gradients (larger in the x direction) push bulk "out" \rightarrow "flow" More particles seen in the x-direction

06/07/24

$$E \frac{d^{3} N}{d^{3} p} = \frac{1}{2\pi} \frac{d^{2} N}{p_{T}^{d} p_{T}^{d} y} (1 + \sum_{n=1}^{\infty} 2 v_{n} \cos(n(\varphi - \Psi_{n})))$$

- Anisotropic flow: initial spatial anisotropy → final momentum anisotropy via collective interactions
 - v_n quantify the event anisotropy

Pressure gradients (larger in the x direction) push bulk "out" \rightarrow "flow"

More particles seen in the x-direction

- Anisotropic flow: initial spatial anisotropy \rightarrow final momentum anisotropy via collective interactions
 - v_n quantify the event anisotropy
- Characterize key QGP properties like viscosity
 - Nearly perfect fluid: $1/4\pi < \eta/s < 3/4\pi$

06/07/24

A. Dobrin - LHCP24

Pressure gradients (larger in the x direction) push bulk "out" \rightarrow "flow" More particles seen in the x-direction

J. Bernhard et al., NP 19 (2019) 1113

8

Small collision systems: collectivity

- Minimum bias pp
 - Nonflow contributions
 - Near-side jet peak (+resonances, HBT effects)
 - Recoil jet in away side

ALICE, PLB 719 (2012) 29 ATLAS, PRL 116 (2016) 172301

06/07/24

Small collision systems: collectivity

near-side

ridge

- Minimum bias pp
 - Nonflow contributions
 - Near-side jet peak (+resonances, HBT effects)
 - Recoil jet in away side

ALICE, PLB 719 (2012) 29 ATLAS, PRL 116 (2016) 172301

06/07/24

A. Dobrin - LHCP24

High multiplicity pp

systems

Near-side ridge, typical of collective

Decomposed into Fourier harmonics

Small collision systems: collectivity

near-side

ridge

- Minimum bias pp
 - Nonflow contributions
 - Near-side jet peak (+resonances, HBT effects)
 - Recoil jet in away side

ALICE, PLB 719 (2012) 29 ATLAS, PRL 116 (2016) 172301 What is the

- High multiplicity pp
 - Near-side ridge, typical of collective systems
 - Decomposed into Fourier harmonics

What is the origin of these collective effects?

06/07/24

The 12th Large Hadron Collider Physics Annual Conference June 3-7, 2024 @ Northeastern University http://lhcp2024.cos.northeastern.edu

Collectivity

Anisotropic flow at forward rapidity

- Measurements of v_2 , v_3 , and v_4 coefficients are extended at large η
 - Hit-based analysis
- v₂ shows strong centrality dependence
- v₃ and v₄ reveal a modest centrality dependence
- Models overestimate the measured v_n coefficients
 - Constrain initial conditions

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} \sim 1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\varphi - \Psi_n))$$

Anisotropic flow at forward rapidity

- Measurements of $v_2(p_T)$ and $v_3(p_T)$ coefficients at forward rapidity
 - Similar trends but different magnitudes than reported at central rapidity
 - Pseudorapidity range, nonflow contributions
 - Constrain models

SS

Longitudinal flow decorrelations

ATLAS, arXiv:2308.16745

- Constrain geometry in longitudinal direction
 - Measure 2-particle correlations between two η regions
 - Parametrize with $c_n = A_n(1 + F_n\eta + S_n\eta^2)$
 - *F*ⁿ characterize the linear decorrelation strength
- Comparison with model with no geometric decorrelation
 - Qualitatively agreement in Xe–Xe but not in pp collsions
 - Evidence for longitudinal fluctuations in pp collisions
 possibly from subnucleonic structures

 ref.
 a
 ref.

 -4.9<η<-4.0</td>
 -2.5<η<2.5</td>
 4.0<η<4.9</td>

 A. Dobrin - LHCP24
 1

- Probe the initial stage
 - $\rho < 0$: geometric response
 - $\rho > 0$: Color Glass Condensate (CGC)
- Decreasing trend with increasing multiplicity in pp and p–Pb collisions
 - Not explained by simple geometry picture
 - Not described by a CGC-based hybrid model (w/wo initial momentum anisotropy)

$$\rho(v_{n}^{2}, [p_{T}]) = \frac{\operatorname{Cov}(v_{n}^{2}, [p_{T}])}{\sqrt{\operatorname{Var}(v_{n}^{2})}\sqrt{c_{k}}}$$

06/07/24

İSS

ALICE, PRL 132 (2024) 172302

- Ridge yields to study collective effects down to low multiplicities
 - Overlap with e^+e^- results from ALEPH at \sqrt{s} = 91 GeV

ALI-PUB-566419

ALICE, PRL 132 (2024) 172302

- Ridge yields to study collective effects down to low multiplicities
 - Overlap with e^+e^- results from ALEPH at \sqrt{s} = 91 GeV
- Strong multiplicity dependence
 - Good agreement with CMS results

ALICE, PRL 132 (2024) 172302

- Ridge yields to study collective effects down to low multiplicities
 - Overlap with e^+e^- results from ALEPH at $\sqrt{s} = 91$ GeV
- Strong multiplicity dependence
 - Good agreement with CMS results
 - Large differences between pp and e^+e^- results for $N_{ch} < 18$

Y-C. Chen et al., arXiv: 2312.05084

2-particle correlations on LEP-II e⁺e⁻ data

20

Thrust Axis

- 2-particle correlations on LEP-II e⁺e⁻ data
- High multiplicity: excess of azimuthal anisotropy
 - Long-range near-side structure
 - Narrow away-side structure
- No ridge signals in e^+e^- for $N_{ch} < 40$

A. Dobrin - LHCP24

SS

- ATLAS, PRL 131 (2023) 162301 V_2 2 $0.5 < p_{\tau}^{a,b} < 4 \text{ GeV}$ $40 \le N_{ch}^{rec, corr} < 150$ ATLAS ATLAS 0.3 $pp \sqrt{s}=13 \text{ TeV}, 15.8 \text{ pb}^{-1}$ $pp \sqrt{s}=13 \text{ TeV}, 15.8 \text{ pb}^{-1}$ 0.5<p_{-}^a<4 GeV 0.2 h-h h-h h^{UE}-h^{UE}: • AllEvents h^{UE}-h^{UE}: • AllEvents NoJets NoJets △ WithJets △ WithJets 0.2 $h^{UE}-h^J$: $p_{\tau}^G > 40 \text{ GeV}$ $h^{UE}-h^J$: $rac{\Phi}{P}^G_{T} > 40 \text{ GeV}$ 0.1 0.1 20 60 80 100 120 2 3 40 140 5 6 0 0 4 N^{rec,corr}_{ch} p_{τ}^{b} [GeV]
 - Check if ridge is associated with jet production
 - 2-particle correlations for particles from UE or associated with jets
 - No dependence on jets presence for v_2
 - $v_2 \sim 0$ for UE–jet particles correlations

06/07/24

 v_2 w/wo jets

In-jet v_2

• Search for v_2 in individual jets

- Search for v_2 in individual jets
- 2-particle correlations in rotated frame

- Search for v_2 in individual jets
- 2-particle correlations in rotated frame
- $N_{ch}^{jet} < 80$: good agreement with MC
- $N_{ch}^{jet} > 80$: upward trend \rightarrow collectivity in jets? 06/07/24 A. Dobrin - LHCP24

v₂ of identified particles

- Low *p*_T: consistent with mass ordering
- Intermediate p_{T} : particle type grouping
- Described by hydrodynamics with coalescence and jet fragmentation
 - No jet quenching yet!
- 06/07/24

A. Dobrin - LHCP24

SS

v₂ of f₀(980)

İSS

CMS, arXiv:2312.17092

• Structure unknown: diquark, tetraquark, KK molecule Use v_2/n_q scaling to extract number of quarks

v₂ of f₀(980)

CMS, arXiv:2312.17092

v₂ of f₀(980)

CMS, arXiv:2312.17092

The 12th Large Hadron Collider Physics Annual Conference June 3-7, 2024 @ Northeastern University http://lhcp2024.cos.northeastern.edu

Particle production

$dN_{ch}/d\eta$ in Run 3

• $dN_{ch}/d\eta$ measured at highest energy in Pb–Pb

İSS

• $dN_{ch}/d\eta$ measured at highest energy in Pb–Pb and pp collisions

İSS

- $dN_{ch}/d\eta$ measured at highest energy in Pb–Pb and pp collisions
- Magnitude and shape not fully described by MC calculations 06/07/24 A. Dobrin - LHCP24

$dN_{ch}/d\eta$ in Run 3

- Constrain initial conditions and evolution of AA collisions
- Constrain gluon saturation effects and nuclear shadowing

- $dN_{ch}/d\eta$ measured at highest energy in Pb–Pb and pp collisions
- Magnitude and shape not fully described by MC calculations 06/07/24 A. Dobrin - LHCP24

$dN_{ch}/d\eta$ in Run 3

A. Dobrin - LHCP24

06/07/24

Speed of sound in QGP

 c_{s^2} can be extracted from $< p_T >$ and N_{ch} •

- c_{s^2} can be extracted from $< p_T >$ and N_{ch}
- Models predict a rising slope at large N_{ch}

Speed of sound in QGP CMS, arXiv: 2401.06896 Impact parameter (b) $b \approx 0$

Temperature (T $\approx \langle p_T \rangle / 3$)

- c_{s^2} can be extracted from $< p_T >$ and N_{ch}
- Models predict a rising slope at large N_{ch}
 - Fit slope follows model calculations

06/07/24

- Similar ATLAS measurement
 - Understand fluctuations in initial conditions
 - Geometric vs "intrinsic"
 fluctuations
 - Clear rise in <[*p*_T]> and drop in variance κ₂
 - Expected from independent source models

R. Samanta et al., PRC 108 (2023) 024908 R. Samanta et al., PRC 109 (2024) L051902

$$=\frac{\sum_{i_{1}\neq...\neq i_{n}}w_{i_{1}}..w_{i_{n}}(p_{\mathrm{T},i_{1}}-\langle [p_{\mathrm{T}}]\rangle)...(p_{\mathrm{T},i_{n}}-\langle [p_{\mathrm{T}}]\rangle)}{\sum_{i_{1}\neq...\neq i_{n}}w_{i_{1}}...w_{i_{n}}}$$

Strangeness enhancement

- Strangeness increases with multiplicity
 - Hierarchy with strangeness content

A. Dobrin - LHCP24

SS

Strangeness enhancement

- Strangeness increases with multiplicity
 - Hierarchy with strangeness content
- More differential measurements in Run 3 → better constraints
 - pQCD-inspired models need extra mechanisms

Strangeness enhancement: charm

- Compare D mesons with and without s quark
- Ratio increases with multiplicity at low p_T and backward rapidity \rightarrow coalescence for charm hadronization
 - Strangeness enhancement observed in the charm sector

Strangeness enhancement: charm

- Compare D mesons with and without s quark
- Good agreement with LHCb results
- Investigate the multiplicity dependence

Summary

- QGP properties and phase diagram understood much better
 - Initial conditions
 - Equation of state
 - Transport coefficients
 - Particle production mechanisms

- Collectivity and strangeness enhancement in small systems
 - Develop new techniques and more differential measurements
 - Pushing the limits to understand the responsible mechanism(s)

