Theory Summary A personal perspective

Giulia Zanderighi Max Planck Institute for Physics & Technische Universität München

12th edition of the Large Hadron Collider Conference Boston, June 2024

Timeline of particle discoveries

ATLAS

Over the last 150 years, new particles have been continually discovered, marking a triumph for particle physics made possible by the increasing support and investment in collider machines

Turning point

The discovery of the Higgs boson is a turning point. We have now a self-consistent theory that can be extrapolated to very high energies. Any new discovery of a new particle will mark the start of a new era

CERN, 4th July 2012

Other key discoveries

Discoveries are not just about new particles

A selection of other groundbreaking discoveries

• Dark matter (1930)

•

- Cosmic microwave background radiation (1965)
- Observational evidence for black holes (1971)
- Accelerating Universe aka dark energy (1990)
- Neutrino oscillations (1998)
- Detection of gravitational waves (2015)

Many of these discoveries arose from observation, rather than being prompted by the need to address specific theoretical questions

Problems

Matter-antimatter asymmetry Dark matter Dark energy
Axions?
Proton decay Parity violation
Flavour mass hierarchy EW hierarchy problem
Why 3 generations? Gravity? Why $SU(3) \times SU(2) \times U(1)_{r}$?

Key theory questions

The role of theory in guiding experimental endeavours through fundamental questions remains undisputed.

- What stabilises the Higgs mass? ATLAS, CMS ...
- What solves the strong CP problem? ADMX, CAST, IAXO ...
- What generated the matter-antimatter asymmetry? ALICE, Belle II, Daya Bay, LHCb, NA62, T2K, ...
- What is the nature of Dark Matter? LUX, XENON, DarkSide, Super-CDMX ...
- What drives the expansion of the universe? Hubble, Planck, DES, LSST ...
- Is there something behind the hierarchical flavour structure? Belle II, Daya Bay, KOTO, LHCb, Mu2e, NA62, T2K, ...

Trying to answer these theory questions has been shaping a very rich and diverse landscape of experimental activities

Experimental richness

In this landscape, the importance of diversification and redundancy in experimental activities can not be understated.

But excluded by many other experiments

LHC & future colliders

Compared to many other experiments, colliders are multi-purpose machines. This partially lifts the responsibility of theorists to guide experimental searches

At the LHC theory plays a crucial role in

- Predicting signals and backgrounds ⇒ increasing sensitivity to new phenomena
- 2. Guiding experimental searches \Rightarrow optimising final states and observables
- 3. Providing a theory interpretation of signals

For the future, theory has a crucial in addressing the questions

- What should the next collider be?
- Given a collider, what should the requirements of future detectors/experiments be?

1.Predicting signals and backgrounds ⇒ increasing sensitivity to new physics

Collider events: real world

Theorist point of view

Largely based on factorization

Theorist point of view

NNLO timeline

Different colour: different way to handle intermediate divergences

The dream is to have NNLO fully automated for generic processes [Sotnikov]

NNLO timeline

The dream is to have NNLO fully automated for generic processes [Sotnikov]

Complexity

Buccione

eg: ttH/ttW

eg: VV j,tt j

legs

Not just QCD

Talks by Bi, Kallweit, Del Pio, Hoppe, Zaro

Several mechanisms can enhance electroweak effects (not just %) EW Sudakov logarithms, couplings, radiative return, kinematics, ... Field moving EW beyond NLO (mixed QCD-EW, Sudakov logs, QED resummation...)

Matching of EW to parton shower at NLO still open problem

Hard partonic scattering

Progress beyond expectations \Rightarrow remarkable success of theorists

 Progress not due to cranking old machinery but driven by new ideas and developments of new formal developments

Differential equations, symbols, alphabets, finite fields method, functional reconstruction, ...

Strong synergies with formal mathematics

Many calculations eagerly awaited and in sight in the next five years

NNLO for ttH, Wbb, ttbb, ...; N³LO for dibosons, ...

Talks by Devoto, Tancredi, Kallweit

In the meantime, very clever approximations help reduce theory uncertainties together with solid validation methods

massification procedures, soft "boson" approximation, expansions ...

pQCD well on track to keep up with experimental precision

Theorist point of view

Parton shower

Talks by Hoppe

Parton shower: Energy degradation of particles from the hard collision, producing more particles during evolution

Also progress in simulation of Dark Showers

Talk by Scherb

from Ravasio/Ferrario

Modern parton showers

Parton showers are ubiquitous at the LHC

Modelling QCD processes, event simulation, background estimates, unfolding, detector simulation, ...

The development of parton shower has seen a dramatic change in recent years. Key new elements of modern parton showers include

- Improvements in the accuracy of the parton shower
- Numerical procedure to validate the accuracy
- Understanding that some parton showers have lower accuracy \Rightarrow can be disregarded when assessing theory uncertainties ALARIC, DEDUCTOR, PANSCALES, HERWIG7 ...

A revolution in parton shower developments is ongoing. Will be crucial for Run 3, HL-LHC and FCC.

Parton shower matching

Different methods developed. NNLOPS with leading logarithmic accuracy in the shower well understood

MiNNLO _{PS}						$\begin{array}{cccc} H & Z\gamma & \gamma\gamma \\ Z & W & WW & WZ & b\bar{b}Z \end{array}$
UNNLOPS		Н	Ζ			
Geneva			Ζ			$\begin{array}{cccc} ZH & H \to b\bar{b} & HH \\ WH & H \to gg & H \\ & \gamma \gamma & ZZ & W\gamma \end{array}$
NNLOPS	Η	Z W		WH	ZH WW	$H \rightarrow b\bar{b}$

Not yet clear how to preserve accuracy of more accurate showers in the matching

Theorist point of view

Towards N³LO PDFs

First approximate N³LO PDFs are available:

Yet, many ingredients for N³LO accurate PDFs are missing:

 Splitting functions DIS massless partonic coefficients • $\mu^2 \frac{df_i}{d\mu^2} = P_{ij}\left(\mu^2\right) \otimes f_i\left(\mu^2\right)$ DIS massive partonic coefficients $F_i(x,Q^2) = \sum_{i} C_{i,k} \otimes f_i(x,Q^2)$ VFNS matching conditions $f_{i}^{(n_{f}+1)}\left(x,\mu^{2}\right) = A_{ij}\left(x,\alpha_{s}\right) \otimes f_{i}^{(n_{f})}\left(x,\mu^{2}\right)$ Hadronic coefficients at N3LO

 (\mathbf{X})

Towards N³LO PDFs

Similarities	Differences
Include available N3LO info at time	Own approximations used for each
of publication	piece
Include theoretical uncertainties for	Different methodology for theory
missing pieces	uncertainty.

Largest differences in gluon PDFs (several percent in Higgs region)

Theorist point of view

Photon PDF

Because of QED effects, photons (and leptons) can be found in protons

Thinking outside the box, it was possible to reduce the uncertainty on the photon PDF from 100% to about 1%

LHC as photon collider

Opens up many new research directions

- LHC as a photon collider \Rightarrow photon-induced dilepton production
- Photo-nuclear reactions, including vector-meson production
- Photon-photon induced processes in Heavy Ion collisions
- LHC as photon collider also for BSM searches

Talk by Lang

• Leptons in the protons \Rightarrow new search channel for leptoquarks (resonant LQ production) Talks by Wilsch and Reimers

Proof of extraordinary versatility of LHC experiments and of synergy with theory!

Theorist point of view

Largely based on factorization

Theory master formula

Factorisation implies the following form of hadronic cross sections

$$d\sigma_{\rm PP \to final} = \sum_{i,j,\rm final} \int dx_1 dx_2 d\Phi_{\rm final} f_i(x_1,\mu_F^2) f_j(x_2,\mu_F^2) \frac{d\hat{\sigma}_{ij \to \rm final}}{d\Phi_{\rm final}} \Theta_{\rm cuts}$$

Parton distributions functions Extracted from data at various experiments/energies. PDFs are universal and their evolution is perturbative (LO, NLO, NNLO, ...) Partonic cross sections Expansion in the coupling constants (LO, NLO, NNLO, ...), also including enhanced all-order terms (LL, NLL, NNLL, ...)

Theory master formula

Factorisation implies the following form of hadronic cross sections

$$d\sigma_{\rm PP \to final} = \sum_{i,j,\rm final} \int dx_1 dx_2 d\Phi_{\rm final} f_i(x_1,\mu_F^2) f_j(x_2,\mu_F^2) \frac{d\hat{\sigma}_{ij \to \rm final}}{d\Phi_{\rm final}} \Theta_{\rm cuts} \left(1 + \mathcal{O}(\Lambda_{\rm NP}^n/Q^n)\right)$$

Non-perturbative (NP) power corrections to the factorisation formula

Can become relevant

- if n is small, e.g. n=1 (1 GeV/100 GeV ~1%)
- if Q is small, e.g. low transverse momentum
- for ultra-precision measurements

α_s from pt,z

E.g. $p_{t,Z}$ close to the Sudakov peak used recently by ATLAS to extract α_s with high precision

	ATLAS Preliminary	 Hadron Colliders Category Averages PDG 2022 Lattice Average FLAG 2021 World Average PDG 2022 ATLAS Z p₁ 8 TeV
ATLAS ATEEC	-	0.1185 ± 0.0021
CMS jets		0.1170 ± 0.0019
W, Z inclusive	-	0.1188 ± 0.0016
tī inclusive		0.1177 ± 0.0034
τ decays		0.1178 ± 0.0019
$Q\overline{Q}$ bound states		• 0.1181 ± 0.0037
PDF fits		0.1162 ± 0.0020
e⁺e⁻ jets and shapes	•	0.1171 ± 0.0031
Electroweak fit		0.1208 ± 0.0028
Lattice		0.1184 ± 0.0008
World average		• 0.1179 ± 0.0009
ATLAS Z p ₋ 8 TeV		0.1183 ± 0.0009
,	0.115	0.12 0.125 0.13 α,(m

Experimental uncertainty	+0.00044	-0.00044
PDF uncertainty	+0.00051	-0.00051
Scale variations uncertainties	+0.00042	-0.00042
Matching to fixed order	0	-0.00008
Non-perturbative model	+0.00012	-0.00020
Flavour model	+0.00021	-0.00029
QED ISR	+0.00014	-0.00014
N4LL approximation	+0.00004	-0.00004
Total	+0.00084	-0.00088

α_s from pt,z

E.g. $p_{t,Z}$ close to the Sudakov peak used recently by ATLAS to extract α_s with high precision

Ultra-precise flagship measurement relies on low pt where Lattic Work ATLA 2 PT 0 100 0.115 0.12 0.125 0.13

 $\alpha_{s}(m_{j})$

9

4

)4

8

α_s world average

Uncertainty on α_s (and PDF) can be the dominant source of uncertainty

Procedure to compute worlds average in PDG:

- subdivide observables in categories
- provide an average for each category
- provide an average of all categories

 \Rightarrow the world average of α_{s}

 $lpha_s(M_Z^2) = 0.1179 \pm 0.0009$

 $lpha_s(M_Z^2) = 0.1182 \pm 0.0008$, (lattice) $lpha_s(M_Z^2) = 0.1176 \pm 0.0010$, (without lattice)

Many ambiguities, choices (e.g. treatment of correlations etc.), subtle aspects involved... 32

α_{s} from lattice

Traditional lattice simulations face multiscale problem

Talk by Del Debbio

HVP to $(g-2)_{\mu}$

Talk by Del Debbio

A tension between theory (lattice) and theory (R-ratio)

The devil is in the detail. Work in progress between theory and experiment to clarify this \Rightarrow something exciting to keep an eye on

2.Guiding experimental searches ⇒ optimising final states and observables

Theorist point of view

Jet substructure

Talk by Caletti, Moult, Nguyen

Insight from formal theory is revolutionising our understand of jets

Example: energy correlators

Substructure & jets in medium

Talks by Andres, Barata, Ehlers, Go, Takacs

Hadrons <

 10^{-2}

 \Rightarrow great candidate for heavy-ion substructure program due to excellent theoretical properties

DOCD

 R_L

 10^{-1}

W mass

Talk by Bozzi

Extraction of W mass to the current level of precision without precision theory predictions unimaginable

discrepancy between different experiments.

W mass

Talk by Bozzi

New observable: asymmetry around Jakobian peak

Effective field theories

At the LHC

In football as in watchmaking, talent and elegance mean nothing without rigour and precision. Lionel Messi

Effective field theories

The physical idea behind EFTs, scale separation, is ubiquitous:

ETFs on one hand allow to achieve precision by neglecting irrelevant details, on the other hand ETFs allow to probe sensitivity to higher scales anticipating possible discoveries.

Effective field theories

The physical idea behind EFTs, scale separation, is ubiquitous:

ETFs on one hand allow to achieve precision by neglecting irrelevant details, on the other hand ETFs allow to probe sensitivity to higher scales anticipating possible discoveries.

Effective field theory

<u>SMEFT:</u> integrate out unknown, heavy states

 $\mathcal{C}_{i}^{(6)}$: UV Wilson coefficients

$$\mathcal{L} \approx \mathcal{L}_{SM}^{D=4} + \sum_{i=1}^{2499} \frac{C_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(D=6)}$$

Talks by Ambrosio, Apyan, Biekoetter, Chatterjee, Callea, Di Noi, Fontes, Lessa, Li, Rodriguez Sachez, Rojo, Thomas, Thomsen, Vitti

44

 $\mathcal{O}_i^{(D=6)}$: IR sensitive operators

of relevant operators reduced using symmetries and kinematic suppressions. Still, lots of data needed to break degeneracies.

EFT as bridge to a new theory. Many UV theories share the same EFT operators \Rightarrow calls for automation

Effective field theory

Targets non-resonant signals, footprint of new physics:

Most interesting: new Lorentz structures, helicity selection rules, interferences ...

Talk by Rojo

Effective field theory

Many theory issues to be addressed:

- Assumptions about flavor & other symmetries (e.g. 2 in Higgs sector)
- Definition of representative scenarios and benchmarks
- Relevance of dimension-eight contributions and applicability of EFT to high pt processes
- EFT validity, flat directions and correlations
- Dependence on input schemes
- Theory constraints (unitarity, positivity, etc.)
- P terms integrate to 0 in interference terms for CP even observables
- Consideration of beyond-SMEFT EFT frameworks
- jointly fit PDFs and Wilson coefficients

EFT & flavour

Caveats and prospects

Complementarity of flavour, EW and high-pt colliders, and great potential of Tera-Z machine (e.g. FCC-ee) Talks by Cornella and Rojo

BSM in the bulk?

Talk by Franceschini, Thamm

Jet flavour

Example: LHCb charm-jet definition

LHCb 2109.08084

- reconstruct jets with anti-kt algorithm
- require that the leading jet passes fiducial cuts
- the leading jet is considered a charm jet if there is at least one c-hadron satisfying $p_{t,c-hadron} > 5$ GeV and $\Delta R(jet,c-hadron) < 0.5$

This definition is infrared and collinear unsafe when applied to massless charm

Jet flavour

Old proposal: based on kt algorithm	Banfi, Salam, GZ '06
Recent proposals:	
Practical jet flavour through NNLO	Caletti et al. '22
Infrared-safe flavoured anti-kt jets	Czakon et al. '22
A dress of flavour to suit any jets	Gauld et al. '22
Flavoured jets with exact anti-kt kinema	tics Caola et al. '23
Goals	
anti-kt like kinematics	

- infrared-safe to all orders
- flavour information,
 e.g. for jet-substructure
- experimentally feasible

Whether these novel jet definitions will be used in experimental analyses remains to be seen ...

3. Providing a theory interpretation of signals

Higgs discovery

Higgs: a theory independent discovery

Higgs discovery

ATLAS	V 130 fb ⁻¹	⊢●⊣Total	Stat
$m_{H} = 125.0$	09 GeV, ly_l < 2.5	Svet	SM
	H H	Syst.	514
			Total Stat. Syst.
	0-jet, p_{τ}^{H} < 200 GeV	1.27	, +0.18 (±0.08 , +0.16) -0.17 (±0.08 , -0.15)
	1-jet, p_{τ}^{H} < 60 GeV	0.66	$ \begin{array}{c} +0.59 \\ -0.58 \end{array} \begin{pmatrix} +0.30 \\ -0.29 \end{array}, \begin{array}{c} +0.51 \\ -0.50 \end{pmatrix} $
	1-jet, 60 $\leq p_{\tau}^{H} < 120 \text{ GeV}$	0.68	$^{+0.49}_{-0.46}$ ($_{\pm 0.32}$, $^{+0.37}_{-0.33}$)
gg→H (WW*)	1-jet, 120 $\leq p_{\tau}^{H} < 200 \text{ GeV}$	1.43	$^{+0.89}_{-0.76}$ $\begin{pmatrix} +0.63 \\ -0.62 \end{pmatrix}$ $\begin{pmatrix} +0.62 \\ -0.44 \end{pmatrix}$
	\geq 2-jet, p_{τ}^{H} < 200 GeV	1.54	$^{+0.95}_{-0.84}$ ($^{+0.43}_{-0.42}$, $^{+0.85}_{-0.72}$)
	$p_T^H \ge 200 \text{ GeV}$	1.37	$+0.91 \left(\begin{array}{c} +0.63 \\ -0.76 \end{array} \right) \left(\begin{array}{c} +0.63 \\ -0.62 \end{array} \right) \left(\begin{array}{c} +0.65 \\ -0.44 \end{array} \right)$
	\geq 2-jet, 350 $\leq m_{jj} <$ 700 GeV, $p_T^H <$ 200 GeV	0.12	e +0.60 (+0.45 -0.58 (-0.41 ,±0.41)
	\geq 2-jet, 700 $\leq m_{j} <$ 1000 GeV, $p_{_{T}}^{_{H}} <$ 200 GeV	0.57	+0.68 $(+0.57$ $+0.37-0.61$ $(-0.51$ $, -0.33$
qq→Hqq (WW*)	\geq 2-jet, 1000 $\leq m_{jj} <$ 1500 GeV, $p_{_T}^{_H} <$ 200 GeV	1.32	+0.64 (+0.50 ,+0.40 -0.51 (-0.45 ,-0.24)
	\geq 2-jet, $m_{jj} \geq$ 1500 GeV, $p_{\tau}^{H} <$ 200 GeV	1.19	$^{+0.48}_{-0.42}$ $\begin{pmatrix} +0.42 & +0.23 \\ -0.38 & -0.17 \end{pmatrix}$
	≥ 2-jet, m_{ij} ≥ 350 GeV, p_{τ}^{H} ≥ 200 GeV	1.54	$^{+0.61}_{-0.51}$ ($^{+0.51}_{-0.46}$, $^{+0.34}_{-0.22}$)
	0-iet. <i>p^H <</i> 10 GeV		+0.36 (+0.30 +0.19)
	$c_{\text{int}} = 10 \times n^{\mu} \times 200 \text{ GeV}$		-0.30 (-0.27 '-0.13) +0.23 (+0.18 +0.14)
	1 iot $e^H = 60$ GoV		+0.43 (+0.40 +0.16)
	$f_{i} = f_{i} + f_{i} = f_{i$	0.31	-0.38 $(-0.36, -0.13)$
gg→H (ZZ*)	$1 - jet, 00 \le p_{T}^{+} < 120 \text{ GeV}$	1.42	-0.42 $\begin{pmatrix} -0.38 \\ -0.38 \end{pmatrix}$ -0.18
	1-jet, $120 \le p_T^{\prime} < 200 \text{ GeV}$	0.41	$+0.59$ $\begin{pmatrix} +0.55 \\ -0.58 \end{pmatrix}$ $\begin{pmatrix} +0.25 \\ -0.08 \end{pmatrix}$
	\geq 2-jet, $p_{\tau}^{\prime\prime}$ < 200 GeV	0.35	-0.53 $(-0.51, -0.14)$
	<i>p</i> ^{<i>H</i>} ₇ ≥ 200 GeV	2.41	$^{+1.52}_{-1.09}$ $\begin{pmatrix} +1.32 & +0.75 \\ -1.04 & -0.31 \end{pmatrix}$
	VBF	1.49	$^{+0.63}_{-0.50}$ ($^{+0.61}_{-0.50}$, $^{+0.17}_{-0.09}$)
aa→Haa (77*)	≥ 2-jet, 60 < <i>m_{jj}</i> < 120 GeV	1.51	+2.83 (+2.79 ,+0.45 -2.24 (-2.22 ,-0.29)
77 · · · · · · · · · · · · · · · · · ·	≥ 2-jet, m_{ij} ≥ 350 GeV, p_{τ}^{H} ≥ 200 GeV	0.18	+2.09 (+2.08 , +0.18)
VH-lep (ZZ*)		1.29	$^{+1.67}_{-1.05}$ ($^{+1.67}_{-1.05}$, $^{+0.15}_{-0.01}$)
tī̃H (ZZ*)		1.73	+1.77 (+1.72 +0.39) -1.14 (-1.13 -0.18)
	8 6 4 2		
-10 -	0 -0 -4 -2	σ x R normalized	to SM value

Theory crucial for the interpretation of discoveries

Charting the Higgs sector

- 5-20% accuracy in many production/ decay channels
- Exploring the Yukawa interaction
- First constraints on the Higgs potential

Higgs interactions

Status and prospects of our knowledge of Higgs interactions with known particles

Higgs and New Physics

Seeds of New Physics in the Higgs Lagrangian:

Higgs potential

$$V(\phi) = \mu^2 |\phi|^2 + \lambda |\phi|^4$$

– Theorist's assumption

the cornerstone of the SM, also connects with the stability of the universe

$V(\phi), SM$

The Higgs boson is responsible for the masses of all particles. Its potential, linked to the Higgs selfcoupling, is predicted in the SM, but we have not tested it so far

Establishing this assumption is a big answerable question, a guaranteed pay-off

Higgs potential

What did we establish so far?

Talks by Dawson, Tancredi, Wang

- Remarkable progress from the theory side
 New ideas, new tools, record-breaking calculations, new observables, ...
 Theorists are keeping up well with amazing experimental efforts
- So far, we have beautiful agreement between theory predictions and experimental data, marking a remarkable success of the SM

- Remarkable progress from the theory side
 New ideas, new tools, record-breaking calculations, new observables, ...
 Theorists are keeping up well with amazing experimental efforts
- So far, we have beautiful agreement between theory predictions and experimental data, marking a remarkable success of the SM

When is the precision reached good enough? When is it the time to stop?

But now, with the Higgs-boson found in 2012, their theory the "standard model of particle physics" - is complete. It's fine. There's nothing missing. **All Pokemon caught.**

S. Hossenfelder, 2019

But now, with the Higgs-boson found in 2012, their theory the "standard model of particle physics" - is complete. It's fine. There's nothing missing. **All Pokemon caught.**

S. Hossenfelder, 2019

The more important fundamental laws and facts of physical science have all been discovered, and these are now so firmly established that the possibility of their ever being supplanted in consequence of new discoveries is exceedingly remote. **Our future discoveries must be looked for in the sixth place of decimals.**

Maybe we caught all pokemons, but the game is far from over. We are getting ready to play the next level.

Colliders, i.e. high-energy controlled experimental setups, are the best bet to address a varied of fundamental questions.

We face deep, fundamental questions. Answering them will require to think big, act bold, work hard and be patient!