

Precision Electroweak Measurements in CMS

- - LHCP 2024 @ Boston

Yongbin Feng (Fermilab)

- On behalf of CMS Collaboration
 - June 4th, 2024

Introduction

. . .

Precision standard model measurements =

- Make full usage of the statistics collected to understand better experiment and theory
- indirect searches for new physics, with sensitivity reaches to higher energy scales better than direct new physics searches

p/p

Overview

Covered in this talk:

- <u>CMS-PAS-SMP-22-010</u> Drell-Yan forward-backward asymmetry and effective weak mixing angle
- <u>CMS-PAS-SMP-20-004</u> W and Z production cross sections at 5.02TeV and 13TeV
- <u>CMS-PAS-SMP-22-017</u> Z production cross sections at 13.6TeV
- <u>CMS-PAS-SMP-23-005</u> GamGam -> TauTau and limits on tau g-2

CMS *Preliminary* 138 fb⁻¹ (13 TeV)

Effective Weak Mixing Angle

- Signal samples using POWHEG MiNNLO + Pythia8 + Photos
- Four channels considered: $\mu\mu$, *ee*, *eg*, and *eh*:
 - * μ and e are leptons within detector acceptance, i.e, |eta| < 2.4 and 2.5 respectively
 - g is for electrons in the endcap outside the tracking volume, i.e., 2.5<|eta|<2.87 *
 - *h* is for electrons in the forward calorimeter 3.14 < |eta| < 4.36*
- Background:
 - W+jets: corrected with fake-lepton scale factors
 - Multijet background: from data sideband
 - Other EW and top background: from simulations
- Systematic uncertainties:
 - Experimental: MC stat., efficiency, momentum calibration, background, etc
 - Theory: QCD scale, $p_T^{\ell\ell}$ modeling, FSR, etc
 - PDF uncertainty

Effective Weak Mixing Angle

- Default EW configuration
- NLO weak + universal HO corrections
- input scheme of $(\sin^2 \theta_{eff'}^{\ell} m_{Z'} \text{ and } G_{\mu})$
- Width: complex-mass * scheme (CMS)
- Systematic variations:
 - Different Scheme: $(\sin^2 \theta_{eff'}^{\ell} m_{Z'}, \text{ and } \alpha)$
 - Width: pole scheme (PS)
 - Parameter values: $(\Delta m_Z, \Delta m_t, \Delta G_u)$

best the other central values

13 TeV **CMS** *Simulation Preliminary* A_4 NNPDF31 CT18A **CT18X** NPDF40 **MSHT20** CT18 - CT18Z 0.02 \triangleleft LO / 10 $(\alpha(m_Z), m_Z, \sin^2\theta_{\rm eff.})$ $\Delta m_t = 2.0 \text{ GeV}$ -0.02 $\Delta m_Z = 2.1 \text{ MeV}$ $\Delta \sin^2 \theta_{\rm eff} = 6 \cdot 10^{-5}$ 20 40 80 60 ()140 120 $m_{\ell\ell}$ [GeV]

Different NNPDFs tested. By default CT18Z is chosen, since its uncertainty covers the

• Extract $\sin^2 \theta_{eff}^{\ell}$ from simultaneous χ^2 fit of $A_{FB}(y, m)$ in all runs and channels

	χ^2	bins	p(%)	$\sin^2 heta_{ m eff}^\ell$	stat	exp	theo	PDF	MC	bkg	eff	Ca
μμ	241.3	264	82.7	23146 ± 38	17	17	7	30	13	3	2	
ee	256.7	264	59.8	23176 ± 41	22	18	7	30	14	4	5	
eg	119.1	144	92.8	23257 ± 61	30	40	5	44	23	11	12	
eĥ	104.6	144	99.3	23119 ± 48	18	33	9	37	14	10	16	
$\ell\ell$	730.7	816	98.4	23157 ± 31	10	15	9	27	8	4	6	
					I				'			

Effective Weak Mixing Angle

CMS-PAS-SMP-22-010

$$\sin^2 \theta_{\rm eff}^{\ell} \ge 10^5$$

Effective Weak Mixing Angle

<u>CMS-PAS-SMP-22-010</u>

- W and Z cross sections provide precise tests of the standard model predictions:
 - Cross section ratios between W and Z, and between different center-of-mass energy, provide important inputs to the PDFs
 - Good validation on the experimental methodology and the luminosity measurements
- Dedicated low pileup runs at 5.02TeV and 13TeV provide such opportunities, to carry out such measurements with better uncertainties:
 - Low pileup better recoil resolution and smaller uncertainty - lower QCD multijet background

- Measurements done by fitting m_{ee} and m_T distributions for Z and W
- EWK and ttbar background estimated from simulation. QCD multijet background is the dominant background for W's, estimated from data control region (inverting mT)

Data Signal Electroweak tĪ QCD multijet <u>CMS-PAS-SMP-20-004</u>

$Z \rightarrow$	$W^- ightarrow e^- \bar{ u}$	$W^+ \rightarrow e^+ \nu$	$Z ightarrow \mu^+ \mu^-$	$W^- ightarrow \mu^- ar{ u}$	$N^+ o \mu^+ \nu$
г 2	561870	689131	128889	796731	1016318
71	467677.2	592682.4	128414.3	709152.6	924311.1
	11045.5	11721.9	264.1	32791.4	37161.9
	4607.9	4596.7	347.3	6117.7	6100.4
	78699.4	80367.4	0.0	48589.0	48525.4

	$W^+ ightarrow \ell^+ u$	$W^- ightarrow \ell^- ar{ u}$	$Z ightarrow \ell^+ \ell^-$	$\mathrm{W}^\pm ightarrow \ell^\pm u$	W^{\pm}/Z	W^+/W^-
Total	0.32	0.34	0.37	0.26	0.25	0.40
Efficiency (stat)	0.23	0.21	0.26	0.17	0.11	0.30
Trigger prefire correction	0.14	0.13	0.22	0.14	0.08	0.01
QCD multijet (syst)	0.11	0.15	0.12	0.09	0.15	0.19
MC sim. stat	0.10	0.12	0.11	0.08	0.13	0.15
EWK+tīt cross section	0.08	0.10	0.02	0.09	0.07	0.03
$PDF + \alpha_S$	0.05	0.07	0.03	0.05	0.05	0.07
Efficiency (syst)	0.04	0.05	0.09	0.04	0.06	0.01
QCD multijet (stat)	0.04	0.04	0.03	0.03	0.04	0.06
Hadronic recoil calibration	0.02	0.02	0.02	0.02	0.03	0.01
μ_R and μ_F scales	0.01	0.01	0.01	0.01	0.01	0.00

- <2% uncertainty (luminosity uncertainty (~1.9%) + O(0.3%) experimental uncertainty) for fiducial cross sections
- <0.4% uncertainty for fiducial cross section ratios
- Good agreement with predictions at different center-of-mass energy

CMS-PAS-SMP-2

Theory: NNLO, DYTURBO and NNPDF 4.0 PDFs

2

5 7 10 20 Centre-of-mass energy [TeV]

 \times

b

10⁴

0.5

11

0-004
2 TeV)
fid 5.02TeV
1

$gg \rightarrow \tau \tau Production$

<u>CMS-PAS-SMP-23-005</u>

Summary

- Our experiment has really exploited the usage of huge statistics of W and Z events to understand the systematic effects and reduce the uncertainties, with results similar to or better than the LEP precision
 - Improving precision is very challenging, but every step forward is very interesting and worth to explore
- SM predictions continue to be very successful, with no significant tensions found with the theory and experimental uncertainties.
- CMS will continue to explore new ideas and test SM with more results to come out.

Back Up

$gg \rightarrow \tau \tau Production$

<u>CMS-PAS-SMP-23-005</u>

Clear signal in the low nTrack region

16

<i>88</i>	\rightarrow	$\mathcal{T}\mathcal{T}$

Process	eμ	$e \tau_h$	$\mu au_{ m h}$
$Z/\gamma^* \to \tau \tau$	3.6 ± 0.5	9.0 ± 1.2	18.7 ± 2.9
$Z/\gamma^* \rightarrow ee/\mu\mu$		3.9 ± 1.2	1.6 ± 0.6
Jet mis-ID	5.0 ± 0.8	11.4 ± 2.9	16.5 ± 3.6
Inclusive VV	3.0 ± 0.3	0.2 ± 0.0	0.4 ± 0.0
$\gamma\gamma ightarrow ext{ee}/\mu\mu$		8.1 ± 2.3	1.4 ± 0.2
$\gamma\gamma ightarrow { m WW}$	2.5 ± 0.6	0.1 ± 0.0	0.4 ± 0.1
Total bkg.	14.1 ± 1.3	32.8 ± 4.8	38.9 ± 4.4
Signal	11.9 ± 4.2	15.8 ± 5.7	40.3 ± 14.2
Total	26.0 ± 3.8	48.5 ± 4.7	79.2 ± 13.6
Observed	24	54	57

- Much better sensitivity to the anomalous electromagnetic momenta
- Set the most stringent limit on a_{τ}

Production

<u>CMS-PAS-SMP-23-005</u>

