

Scattering and Neutrino Detector at the LHC

PERFORMANCE OVERVIEW OF SND@LHC AND FASER

A.KAUNISKANGAS & **E.ZAFFARONI** ON BEHALF OF THE SND@LHC AND FASER COLLABORATIONS

NEUTRINOS AND DARK SECTOR AT THE LHC MOTIVATION

NEUTRINOS

- Collisions at the LHC produce high fluxes of ν in previously unexplored energies $E_{\nu} \in [10^2, 10^3]$ GeV
- In the forward region, neutrinos are produced mainly in decays of hadrons
 - Probe heavy flavour production at the LHC

Even a small detector near an LHC interaction point, placed close to the beam axis, can study neutrinos of all flavours, and have sensitivity to long-lived dark sector particles

- Light dark sector particles could be produced in decays of SM hadrons
- At the LHC, these particles would be predominantly produced close to the beam direction

SND@LHC AND FASER TWO COMPLEMENTARY EXPERIMENTS

Physics	Detector
Detect & identify all neutrino flavours Probe QCD with neutrinos from charm Search for dark sector particle scattering	Emulsion vertex detectorECAL & HCAL
Detect & identify all neutrino flavours High energy & statistics for neutrinos Probe QCD with neutrinos from charm Gearch for dark sector particle decay	 Emulsion vertex detector Spectrometer & ECAL

SND@LHC DETECTOR

VETO

- Three planes of scintillating bars
- Tags charged
 particles as they
 enter the detector

TARGET AND VERTEX DETECTOR

- Emulsion cloud chambers (ECC) with tungsten for ν identification via precise vertexing
- Scintillating fibre (SciFi) planes provide timing and calorimetric information

MUON SYSTEM AND HCAL

- Scintillating bars interleaved with iron walls, sampling every λ
- Timing, muon ID and energy measurement
- Higher granularity in downstream stations for muon tracking

VETO SYSTEM SND@LHC

- by SiPMs
- dead zones between bars

Tags charged particles entering the detector

• Three (Two until 2024) planes with 7 scintillating bars in each, read out

• The planes cover the target surface area, and are staggered to mitigate

EMULSION TARGET SND@LHC

- Five ECC walls used as a vertex detector
- 0.31 mm emulsion films interleaved with 1 mm tungsten plates
- Total target mass: 830 kg
- Emulsions changed every $< 20 \, \text{fb}^{-1}$

TRACKING RESOLUTION

- $\sigma_{x,y} \sim 0.7 \ \mu m$ $\sigma_{\tan(x,y)} \sim 10^{-6}$

ECC target data is extracted by developing and scanning the emulsion films with microscopes

dx[µm]

SND@LHC wall

dTX[mrad]

-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01

SCINTILLATING FIBRE TRACKER

SND@LHC

- Five SciFi stations interleaved with ECC walls, each with two perpendicular planes
- Provides timing and electromagnetic calorimetry together with the emulsions

TIME RESOLUTION

- Evaluated in TI18 data
- ~ 320 ps in a layer
- ~ 230 ps in a plane
- $\sim 100 \text{ ps in full SciFi}$

8000

6000

2000 —

H 250 μm

SciFi coincidence time resolution Constant 1.34e+04 ± 4.69e+01 0.000786 ± 0.001165 0.455 ± 0.001 -2 -3 -1 ∆t [ns]

MUON SYSTEM AND HCAL SND@LHC

10 bars, $(1 \times 6 \times 81 \text{ cm}^3)$

60 horizontal bars $(1 \times 1 \times 81 \text{ cm}^3)$ $60 \text{ vertical bars} (1 \times 1 \times 60 \text{ cm}^3)$

- $\sim \lambda_{int}$)
 - Five upstream stations - hadronic calorimetry
 - Three downstream stations - muon identification

• 8 stations of scintillating bars, interleaved with 20 cm iron slabs (1 slab

OPERATION SND@LHC

- The electronic data acquisition is done triggerlessly - all hits passing a threshold are sent to the server for event building
- The detector has been operated with high efficiency, collecting
 - 95% of the delivered luminosity in 2022
 - 99.7% of the delivered luminosity in 2023

ntegrated luminosity [fb⁻¹]

EMU EMU Rl EMU RL EMU RL

> 20 EMU

Rl EMU

20

EMUL RU EMULSION RUN7

2022	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	INSTRUMENTED TARGET MASS	INTEGRATED LUMINOSITY
MULSION RUN0													39 kg	0.46 fb ⁻¹
MULSION RUN1													807 kg	9.5 fb ⁻¹
MULSION RUN2													784 kg	20.0 fb ⁻¹
MULSION RUN3													792 kg	8.6 fb ⁻¹

023	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	INSTRUMENTED TARGET MASS	
LSION JN4													797 kg	21.2
LSION JN5													784 kg	10.7
)24	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	INSTRUMENTED TARGET MASS	
LSION JN6													797 kg	12.1
													398 kg	in pro

FASER DETECTOR

DECAY VOLUME & TRACKING SPECTROMETER

- Dipole magnets separate collimated opposite charged particles and measure the charge of μ from ν interactions
- Silicon strip trackers to measure position, charge & momentum of charged particles

ECAL

- Plastic scintillator interleaved with lead
- Measures the total electromagnetic energy

FASER_{*v*} **EMULSION DETECTOR**

- - neutrino DIS in the ECAL

$FASER\nu$ FASER

- 0.34 mm thick 20 x 30 cm emulsion films interleaved with 1.1 mm tungsten plates (730 plates total)
- Mechanical support with a presser ensures sub-micrometric alignment of the emulsion modules

identification via precise vertexing

- Total target mass: 1100 kg
 - Emulsions changed every 10-30 fb $^{-1}$

TRACKING SPECTROMETER

FASER [NIMA:2022.166825]

- Separates opposite charged particles produced in the decay of a long-lived particle
- Measures the position and momentum of charged particles
- Three stations separated by two permanent 0.57 T dipole magnets
 - Each station consists of silicon double strip modules that were spares of the ATLAS SCT barrel detector
- Separate interface tracker (IFT) station allows for matching of neutrino interaction tracks to spectrometer tracks

TRIGGER & OPERATION

FASER [JINST:16.P12028]

- The physics coincidence trigger selects events with coincident signal in a front veto scintillator station and the preshower scintillator station
 - Coincidence trigger rate factor 4 smaller than individual trigger rate \rightarrow dominant triggered background from particles triggering individual stations rather than energetic muons

Coincidence trigger deadtime $\sim 2\%$

CONCLUSION

- The LHC provides a unique environment for neutrino physics and long-lived dark sector particle searches
- Two complementary experiments, **SND@LHC** and **FASER** are currently in operation, located symmetrically on both sides of the ATLAS IP1
- Detector performance of both experiments is well understood, with more studies currently ongoing

See also dedicated talks on SND@LHC and FASER physics results! [1,2,3]

or For **HC** ated IP1 ts is

BACKUP

ν_{μ} ENERGY RECONSTRUCTION snd@lhc

Energy calibration applied to 32 ν_{μ} candidates from 2022-2023 data

→ Good agreement with Monte Carlo predictions

ENERGY & MOMENTUM RECONSTRUCTION

FASER

Reconstructed vs true electron energy in simulated ν_e charged current events

Reconstructed vs true muon momentum in simulated muon tracks with a flat momentum distribution of [1-2000] GeV

EVENT DISPLAY

Event display of a muon traversing FASER recorded on 21 April 2023 with 6.8 TeV stable beams

HCAL TESTBEAM

SND@LHC

- Testbeam setup:
 - 4 SciFi modules interleaved with 0.5 λ_{int} iron blocks
 - 5 upstream (US) modules with horizontal bars & 1 downstream (DS) module with horizontal and vertical bars interleaved with 1 λ_{int} iron blocks
- [100, 140, 180, 240, 300] GeV pion beam
- Shower containment 95%

Notes:

- MIP response agrees with SND@LHC data
- QDC distributions change depending on which SciFi wall the shower originates from
- Saturation in US observed cause confirmed in the lab to be the electronics rather than SiPMs

DATA ACQUISITION

SND@LHC

- All electronic detectors are read out by TOFPET2-based front-end boards
 - Low signal threshold
 - Good timing: 40 ps binning
 - 128 channels

- DAQ boards based on Cyclone V FPGA.
 - Runs at 160 MHz, aligned with the LHC clock
 - Collects data from four front-end boards (4x128=512 channels)
 - Gets clock from LHC via optical fibre
 - Triggerless DAQ: all hits above threshold sent to server over ethernet.
- DAQ server
 - Receives hits from DAQ boards, 17k channels in total
 - Runs timestamp-based event-building code
 - Applies online noise filter
 - Saves data to disk in ROOT format

