Exploring jets: substructure and flavour tagging in CMS and ATLAS

Andrea Malara

Université Libre de Bruxelles

On behalf of the ATLAS and CMS collaborations 07 June 2024

ULB

LHCP 2024

Hadronic environment @ LHC

- Proton-proton collider
- (+ several others)
- Abundance of quarks and gluons in pp collisions

Andrea Malara

LHCP 2024

Jet calibration

Energy

Traditional calibration in Run2 both in CMS and ATLAS

 \blacktriangleright Factorised approach: pileup \rightarrow simulation \rightarrow residuals

LHCP 2024

Jet calibration

Energy

- In-situ calibration of data
- Eta-intercalibration

Tagging

Tagging

Type of elementary particle that initiated the jet

Boosted topology -> Collimated decay products reconstructed as multi-prong objects

Tagging

Type of elementary particle that initiated the jet

Jet mass

LHCP 2024

Tagging

Andrea Malara

LHCP 2024

Tagging

Type of elementary particle that initiated the jet

\blacktriangleright Jet mass \rightarrow ML with regression

> Jet flavour (b vs light, b vs c, g vs light) $\rightarrow R = 0.4$

Andrea Malara

LHCP 2024

⁰⁷ June 2024

Tagging

- Type of elementary particle that initiated the jet
- \blacktriangleright Jet mass \rightarrow ML with regression
- > Jet flavour (b vs light, b vs c, g vs light) $\rightarrow R = 0.4$

Particle Transformer

07 June 2024

11

Tagging

Type of elementary particle that initiated the jet

\blacktriangleright Jet mass \rightarrow ML with regression

- Jet flavour (b vs light, b vs c, g vs light) $\rightarrow R = 0.4$
 - Jet substructure (top, W/Z, H) $\rightarrow R = 0.8$ or 1.0

CMS Simulation Preliminary 10⁰ efficiency $H \rightarrow c\overline{c} vs QCD cc$ $p_T > 600 \text{ GeV}, \ |\eta| < 2.4$ 90 < m_{SD} < 140 GeV 10-Background ParT ---- ParticleNet PFN EFN $-\cdots Z_{NN} (w/N_{trk})$ - Z_{NN} (w/o N_{AL}) 10^{-2} 10⁻³ ParticleNet-MD ccvsQCD DeepDoubleCvL DeepAK8-MD ccvsQCD 10 8.0 0.9 0.2 8.0 0.0 0.6 0.6 0.7 0.4 $\hat{\mathcal{E}}_{sig}$ **ATLAS-PUB-2023-020 CMS-BTV-22-001** Signal efficiency **LHCP 2024 07 June 2024**

Tagging

LHCP 2024

Jet identification ("tagging") - modelling

Tagging -> modelling

- The more and more complex models/networks are being used
- magnifying glass into substructure
- In need to understand in detail modelling uncertainty

Jet substructure

- Correlation of mass and energy scale
 - Strong correlation observed ($\sim 80/90\%$) \rightarrow Dedicated corrections
 - \blacktriangleright Corrections vary between 1 3% depending on the correlation scheme

Andrea Malara

CMS-DP-2023-044

LHCP 2024

Jet substructure

CMS-DP-2023-046 ATL

LHCP 2024

Jet substructure

Jet substructure

Correlation of mass and energy scale

Find out more about new calibration methods and training frameworks in CMS! CMS-DP-2024-020 CMS-DP-2024-024 **CMS-BTV-22-001**

LHCP 2024

Run3 and beyond

ML tools for data-certification

- Anomaly detection
 - Unsupervised training with AutoEncoder
 - detecting anomalies per lumi-section (LS)
 - Increase efficiency of collected data

Andrea Malara

- Anomalous detector regions:
 - Unsupervised training with AutoEncoder
 - ► 1D and 2D histograms to detect problematic phase-space
 - Reduce time spent and human error

Run3 and beyond

Run 3 data: jet performance

- Successful data-taking in Run3 for CMS and ATLAS
 - Good overall object performance

Andrea Malara

Run3 and beyond

Run 3 data: jet performance

- Successful data-taking in Run3 for CMS and ATLAS
 - Good overall object performance

 - CMS: improved resolution in central detector region

CMS: Minor hiccup due to water leak in ECAL region, and several HCAL scale updates

ratio Jet response

LHCP 2024

Summary and Outlook

- Jets are the *"bread and butter"* that makes everything else possible
- Continuous evolution of techniques
- State-of-the-art ML
- New calibrations methods
- Maximise the potential of ATLAS and CMS detectors to their fullest extent
- First Run3 results available
- Calibration is still ongoing, but good overall performance
- Large improvement is foreseen from the Run2 experience

Thank you for your attention!

LHCP 2024

