

Machine Learning in reconstruction and calibration at the LHC LHCP conference 2024

Christian Sonnabend - Boston, 07.06.2024

GEFÖRDERT VON

貅 Bundesministerium für Bildung und Forschung

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Introduction

Cluster-level → Track-level → Tagging / triggering / calibrations / PID

ML = {Statistics; Linear algebra; Computer science; ...}, but nowadays ML ≈ {Neural networks}

ML at the LHC

Cluster-level → Track-level → Tagging / triggering / calibrations / PID

ALICE – DNN for online clusterization

- Deploy in online GPU reconstruction of ALICE
- tracking performance

Cluster-level

CICADA - Calorimeter image convolutional anomaly detection algorithm

- Operates on a 14x18 (iEta x iPhi) calorimeter image of energy depositions
- anomalies

Source: https://cds.cern.ch/record/2879816?In=en

CMS – CICADA

Encoder learns to produce low mean square error score for normal (zero-bias) event and spikes for

Cluster-level

Cluster-level → Track-level → Tagging / triggering / calibrations / PID

CMS – DNN for line-segment tracking

Combination of detector hits into tracklets and connection of tracklets to track candidates with DNN

Source: https://cds.cern.ch/record/2872904?In=en

	T5	1/Throughput	N streams	
pre-DNN	3.37 ± 0.13	28.4 ± 1.5	1	
DNN	3.39 ± 0.07	28.7 ± 1.1	1	

Cluster-level

LHCb – Graph NN for tracking

Source: https://indico.cern.ch/event/1252748/contributions/5521484/attachments/2731094/4748485/etx4velo_ctd2023.pdf

Category	N	1etric	/	Allen	$s_{\text{triplet}} > 0.32$ Etx4velo $d_{\text{max}}^2 = 0.010$	$s_{\text{triplet}} > 0.36$ Etx4velo $d_{\text{max}}^2 = 0.020$
Long, no electrons		Efficiency		99.26%	99.28%	99.51%
 ✓ In acceptance ✓ Reconstructible in the velo 	c	Clone rate		2.54%	0.96%	0.89%
✓ Reconstructible in the SciFi✓ Not an electron	Hit efficiency			96.46%	98.73%	98.90%
	F	Hit Purity		99.78%	99.94%	99.94%
Long electrons		Efficiency		97.11%	98.80%	99.22%
 ✓ In acceptance ✓ Reconstructible in the velo 	c	Clone rate		4,25%	7.42%	7.31%
 ✓ Reconstructible in the SciFi ✓ Electron 	F	Hit efficiency		95.24%	96.54%	96.79%
	Hit purity			97.11%	98.46%	98.46%
Long, from strange		Efficiency		97.69%	97.50%	98.06%
 In acceptance Reconstructible in the velo 	Clone rate			2.50%	0.92%	0.81%
 Decays from a strange Good proxy for displaced 	Hit efficiency		(97.69%	98.22%	98.77%
tracks	Hit purity			99.34%	99.68%	99.68%
Х	Gł			2.18%	0.76%	0.81%
Category		Metric		Allen	$s_{\text{triplet}} > 0.32$ Etx4velo $d_{\text{max}}^2 = 0.010$	$s_{\text{triplet}} > 0.36$ Etx4velo $d_{\text{max}}^2 = 0.020$
Velo-only, no electrons		Efficiency		96.84%	97.03%	97.86%
 ✓ In acceptance ✓ Reconstructible in the velo ✓ Not reconstructible in the SciFi ✓ Not an electron 		Clone rate		3.84%	1.08%	1.02%
		Hit efficiency		93.89%	97.93%	98.32%
		Hit Purity		99.50%	99.84%	99.82%
 Velo-only electrons ✓ In acceptance ✓ Reconstructible in the velo ✓ Not reconstructible in the SciFi ✓ Electron 		Efficiency		67.81%	85.10%	86.69%
		Clone rate		10.27%	5.02%	4.97%
		Hit efficiency 79		79.21%	93.33%	93.88%
		Hit purity		97.35%	99.07%	98.99%
 Velo-only, from strange ✓ In acceptance ✓ Not reconstructible in the velo ✓ Decays from a strange Good proxy for displaced tracks 		Efficiency		93.53%	93.07%	96.05%
		Clone rate		5.60%	1.97%	1.77%
		Hit efficiency		90.05%	93.92%	96.05%
		Hit purity		99.36%	99.67%	99.64%

Long tracks

Velo-only tracks

Comparable or better performance for efficiencies, clone-rates and purities

Track-level

LHCb – DNN for primary vertex finding

Kernel density estimate (KDE) is replaced by DNN's for PV finding

Source: https://arxiv.org/abs/2309.12417

• KDE estimates PV locations from tracks crossing the beamline (tracks-to-KDE) + CNN (KDE-to-hist) Now: DNN replaces KDE estimate and uses track features directly (track-to-KDE) + U-NET -> (tracks-to-hist) Similar approach is also taken by ATLAS and shows significant improvement to standard AMVF

Cluster-level → Track-level → Tagging / triggering / calibrations / PID

ATLAS – GNNC for small R-jet calibration

DNN as improvement to sequential calibration

- Global sequential calibration (GSC) receives 6 informative jet variables and performs sequential, multiplicative corrections to jet p_T
- Correlations can be taken into account -> DNN for individual n bins with additional information about kinematics, energy depositions and pile-up

Source: https://link.springer.com/article/10.1140/epjc/s10052-023-11837-9

CERN

11

Jet calibrations

CMS – ParticleTransformerAK4

Heavy flavour jet tagging using transformer model

- Major success of deep learning models for jet tagging: DeepJet, ParticleNet
- - Inputs: kinematics (4-momentum), particle identites, trajectory displacements

The architecture of (a) Particle Transformer (b) Particle Attention Block (c) Class Attention Block

Source: https://cds.cern.ch/record/2839920?In=en

• Physics augmented attention mechanism: Pair-wise "interactions" of constituents as model input:

Tagging

12

ATLAS – Point-cloud based pion identification

Vast set of ML models tested for calorimeter pion rejection / identification / regression

- Point cloud based: High dimensional input feature space of cluster images + track properties
- Model architectures: DeepSets, GNN's and Transformers

Point-cloud representation of clusters

Source: https://cds.cern.ch/record/2825379?In=en

• All ML models outperform the traditional π^0 / π^{+-} rejection algorithm and perform well on energy calibration

Tagging

ATLAS - Lund-plane W-tagging with GNN

Large-R jets contain both prongs of the W decay -> GNN's can find jet-constituent correlations

- GNN learns declustered Lund plane variables (such as k_T , z, ΔR) as graph representation
- Adversarial network trained on gaussian mixture model to decouple mass correlation

Simulation: Signal: W' -> WZ -> qqqq Background: light quark or gluon jets

For sub-jets i,j:

$$\Delta R_{ij} = \sqrt{\Delta y_{ij}^2 + \Delta \phi_{ij}^2}, \qquad z = \frac{p_{\rm T}^j}{p_{\rm T}^i + p_{\rm T}^j}, \qquad k_t = p_{\rm T}^j \Delta R_{ij}$$

Source: https://cds.cern.ch/record/2864131

such as k_T , z, ΔR) as graph representation e model to decouple mass correlation

Tagging

LHCb – Lipschitz NN for the online triggering

Monotonic Lipschitz NN - Regularising the weights and makes output robust

- Layer-wise weight-based normalization leads to Lipschitz constraint and robustness
- Adding linear term to activation function leads to monotonicity lacksquare
- Inclusive heavy-flavour triggers (e.g. b-hadron secondary vertices)

CERN

A function, $f: X \to Y$, is Lipschitz continuous if $D_Y\left(f\left(\vec{x}_1\right), f\left(\vec{x}_2\right)\right) \le k D_X\left(\vec{x}_1, \vec{x}_2\right) \quad \forall \vec{x}_1, \vec{x}_2 \in X, k \in \mathbb{R}$

Triggering

ALICE – TPC particle identification

TPC PID is central component in particle identification

- Full 6D, data-driven corrections and sigma estimation to the Bethe-Bloch
- In full production release and utilised by analysers

ALI-PERF-542850

Source: https://cds.cern.ch/record/2856252

Particle identification

— News —

Software and hardware for training

ML community wishlist for centralised training / testing

- Centralised guidelines and solutions for (C++) code integration
- Support for heterogeneous architectures
- Maintained, monitored and shared hardware availability through central CERN services
- -> GPU's are expensive but chances are they will get even more expensive in the future -> Experience across industry suggests that models will get larger -> Local (e.g. institute resources) will not suffice to deal with LHC-scale data

CERN IT

- Review of action-list in progress and to be made public by end of summer • Growing infrastructure for training and HPO at <u>ml.cern.ch</u> (from within CERN network) • Infrastructure for ML for NextGen triggers: ETA is end of the year -> O(100) H100 GPU's

Conclusion

LHC experiments make heavy use of ML!

- Model architectures: Close to cutting-edge developments in industry
- Large scale inferencing on huge (TB/s) data ullet
- Infrastructure is ever growing

Where can we improve?

- Centralised training infrastructure
- Adopt C++ framework for inference on heterogeneous architectures
- With increasing model size, energy consumption grows

Some advertisement

Inter-experimental machine learning (IML) group: <u>https://iml.web.cern.ch/homepage</u> lacksquare

Backup

ATLAS – GNN for tracking in Run 4

GNN4ITk - Full GNN tracking chain for Run 4

• Competitive to CKF tracker both in terms of physics and computing performance

Source: https://indico.cern.ch/event/1252748/contributions/5576737/

Christian Sonnabend

CERN

Efficiency

iciency inside jets

Eff

Track-level

ATLAS – GNN for jet-flavour tagging

At the 70% $t\bar{t}$ working point (WP) for GN1: > 2.25x increase in c-jet rejection

- > 1.8x increase in light-jet rejection
- 1.5x c-rejection and 2x light-rejection on ttbar
- 1.75x c-rejection and 1.2x light-rejection on ${\bm Z'}$

Source: https://cds.cern.ch/record/2855275/files/ATL-PHYS-SLIDE-2023-048.pdf

CERN

Numb

10²

10

Data/MC

Tagging

CMS – SONIC framework

Services for Optimized Network Inference on Coprocessors – SONIC

Coprocessors (GPU's, FPGA's, ASIC's, IPU's) as-a-service application for large-scale data processing

- NVIDIA Triton framework for inference on co-processors (support for PyTorch, TensorRT, ONNX Runtime, TensorFlow and XGBOOST models)
- Advantages of SONIC: Containerisation, simplicity, efficiency, flexibility

• Advantages on-server: Multiple model instances, dynamic batching, model analyzer, ragged batching

Large scale tests confirm most of the expecations and prove validity of the approach in production

ATLAS – AtlFast3 simulation suite

Fast simulation

GEANT is a common simulation tool but very compute intensive -> Calorimeter GAN simulation AtlFast3: FastCaloSimV2 (parameterized model) + FastCaloGAN (ML)

Data creation

LHCb – RICH and ECAL simulation

Fast simulation

Demanding simulations for LHCb: RICH & ECAL

Data creation

cell X

cell X

ALICE - ZDC fast simulation

ZDC is located over 100 meters away from IP2 -> GEANT simulation is slow

- Simulation via DC-GAN ullet
- lacksquare

Data creation

