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The upgraded LHCb detector
• Increased instantaneous 

luminosity 5× from Run 2 to 
2×10!!cm-2s-1

• New tracking detectors

• Improved readout electronics 
to meet rate requirements

• No hardware trigger
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Dataflow in LHCb Run 3
• Software-only trigger allows more flexible selections
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DAQ architecture
• 𝒪(500) FPGA readout boards 

receive data from subdetectors 
at 30 MHz
• Event builder units reorder raw 

data from front-end boards into 
event packets to be processed 
by HLT1
• Throughput of 5 TB/s
• Off-the-shelf components 

reduce cost 
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HLT1 requirements
• To perform selections at HLT1 level, we need:

• Subdetector reconstruction for VELO, UT, SciFi, ECAL, and MUON
• Primary and secondary vertex reconstruction
• Track fitting
• Electron and muon PID

• All at a 30 MHz rate!
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Why GPUs?
• HLT1 is an inherently parallelizable task, at multiple levels

• We run multiple streams on each GPU, each with a slice of events
• Within algorithms, threads are used to parallelize over objects (vertices, tracks, etc.)

• Limited I/O bandwidth is acceptable because small raw event data 𝒪(100 
kB/event) means thousands of events still fit in 𝒪(10 GB) memory
• Cheaper and more scalable than CPU alternative
• Fit well into LHCb DAQ architecture
• Run with 323 Nvidia RTX A5000 GPUs
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HLT1 performance
• Excellent track reconstruction efficiency, both with and without the UT
• Efficiencies equal or better compared to Run 2     
                   𝐵" 𝐵± → 𝐾±𝑒$𝑒%                      𝐷& → 𝐾%𝜋$
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HLT1 online monitoring
• Monitoring is necessary to allow for real-time supervision of reconstruction 

and selections in HLT1 to find issues quickly
• LHCb has a monitoring infrastructure for aggregation and display but HLT1 

monitoring buffers need to be periodically transferred to host
• Monitor all events at full 30 MHz rate → access to events discarded by HLT1
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Machine learning in HLT1
• Requirements of running in the HLT1 

environment are that any model needs to be 
small and fast
• For physics we want our models to be robust 

and possibly monotonic
• Use Lipschitz neural networks to achieve this
• Currently in use for PID, selections, and more
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Alignment and calibration
• Alignment for VELO, RICH mirrors, UT, SciFi, 

and MUON
• Calibration for RICH, ECAL, and HCAL
• Alignment process based on analyzer and 

iterator to obtain convergence
• Needs to be done in real time before HLT2 

for best performance and turbo event model 
(more on this later)
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A&C monitoring
• Monitor alignment and calibration quantities in real-time to catch issues as 

fast as possible
• Perform HLT2 level reconstruction on subset of events to compare with 

HLT1 in real-time
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HLT2 requirements
• Full, offline-quality reconstruction at 500 kHz

• Complete detector decoding, track fit, and PID

• 𝒪(2700) selections written by analysts cover entire LHCb physics program
• To meet rate requirements several improvements were made for Run 3:

• Use structure of arrays memory to vectorize tracking algorithms
• Functors (function objects) are designed to be agnostic to input and output type
• Compile a functor cache instead of just-in-time compilation
• Event scheduler handles data dependencies and composite nodes (AND, OR, etc.)
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HLT2 performance
• Tracking algorithm has excellent momentum resolution
• Efficient PID, neutral reconstruction, and selections
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HLT2 persistency model
• Maximum output bandwidth of 10 GB/s split between calibration (1.6 

GB/s), full (5.8 GB/s), and turbo (2.5 GB/s)
• Turbo model allows full flexibility in what objects are persisted

• Reduces average event size leading to increase in number of events able to be 
selected (bandwidth [GB/s] = average event size [GB] x rate [Hz])

• Baseline for Run 3 – approximately 70% of events are turbo
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Summary
• LHCb is running a completely software-based trigger at 30 MHz (5 TB/s) 
• HLT1 completes a partial reconstruction and selection at the full event rate 

by utilizing parallelization on GPUs
• Real-time alignment and calibration allows HLT2 to complete an offline-

quality reconstruction to meet rate and turbo requirements
• HLT2 developments have met the rate challenge and the turbo model 

allows for higher statistics within a set bandwidth

Thank you for listening!
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Backup

6/7/24 RTA@LHCb 16



Types of tracks in LHCb
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HLT1 tracking efficiencies
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HLT1 CPU vs GPU performance
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HLT2 tracking efficiencies
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HLT2 ECAL efficiencies
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HLT2 ghost rates
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