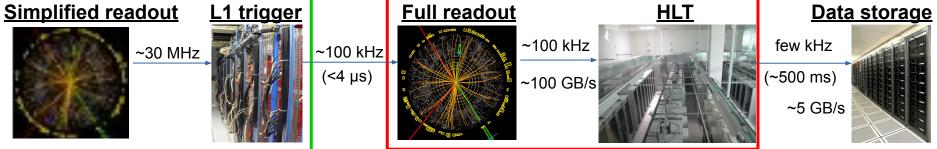


Trigger performance (including data scouting and GPU) at CMS and ATLAS

LHCP 2024 – Boston

Silvio Donato (INFN Pisa) on behalf of the CMS and ATLAS collaboration

Outline


- Introduction: the ATLAS and CMS trigger system
- Delayed reconstruction/parking
- Trigger-level analysis/scouting
- Objects performance
 - Muons, electrons, photons, jets, MET, b-tagging, tau, tracking, long-lived particle
- Multithreading and GPU reconstruction
- Conclusions

The CMS and ATLAS trigger system

- LHC bunch crossing rate: "30 MHz
- Hardware trigger (L1): ~30 MHz → ~100 kHz
 - \circ simplified readout (no tracker), small latency (<4 μ s).
- Software trigger (HLT): ~100 kHz → few kHz.
 - full event readout available (~1 MB/event);
 - HLT farm with ~50k threads \rightarrow ~500ms/event on average
 - Events are rejected in the early stage of the reconstruction
- Storage and offline reconstruction

ATLAS

Delayed reconstruction/parking

- The "standard" trigger cross section ~100 nb eq. Lumi 1×10³⁴cm⁻²s⁻¹ → Rate: 1 kHz. Ο
- Main bottleneck of rate: prompt offline reco.
- **Delayed reconstruction** (ATLAS) and parking • (CMS) to bypass the rate limit.
- In 2018 CMS collected 10B events of displaced • single muon
- Expanded strategy for Run-3 in ATLAS and CMS
 - larger trigger rate; Ο
 - many different final states covered. Ο

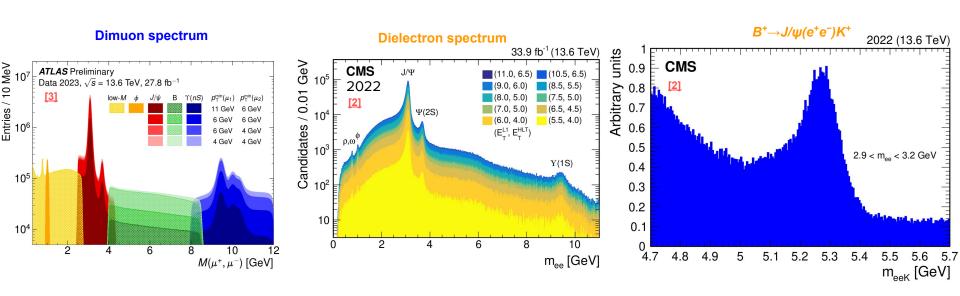
[Fill 6324]

[Fill 8489]

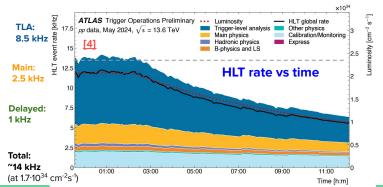
[Fill 9044

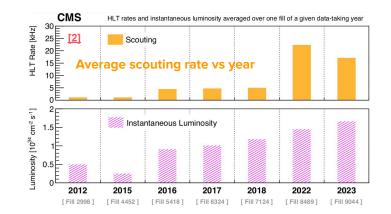
CMS

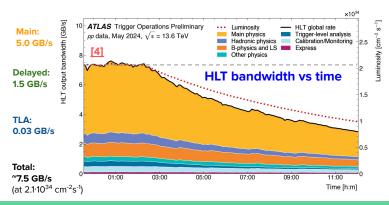
Trigger selection	ATLAS rate [1] (at 1.8×10 ³⁴ cm ⁻² s ⁻¹)	CMS rate [2] (at 2.0×10 ³⁴ cm ⁻² s ⁻¹)	
2 muons (B-physics)	40 Hz	1.6 kHz	
2 electrons (B-physics)	170 Hz	1.3 kHz (only 2022)	
Vector-boson fusion	270 Hz	1.2 kHz (since 2023)	
HH (2 jets + 2 b-jets)	160 Hz	180 Hz (since 2023)	
6 jets	140 Hz	-	
5 jets + 1 b-jet	50 Hz	-	
Long-lived particle	-	150 Hz (since 2023)	


HLT rates and instantaneous luminosity averaged over one fill of a given data-taking year

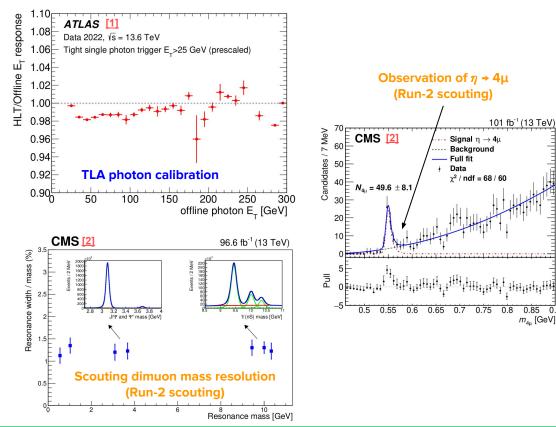
Delayed reconstruction/parking

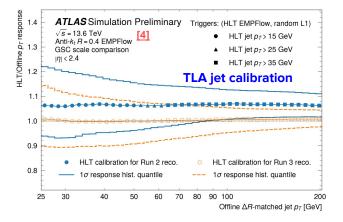


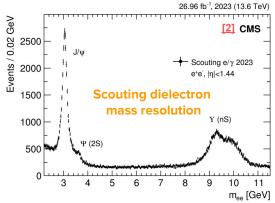



Trigger-level analysis/scouting

- Trigger-level analysis (ATLAS) or scouting (CMS) strategy: save directly trigger objects
 - Event size around 10 kB/event instead of ~1 MB/event,
- Important evolution since Run-1:
 - Rate increased is to 8-20 kHz:
 - Multijet, muons, electron/photons, ...
 - All main physics objects reconstructed:
 - Photons, jets, tracks, b-tag (ATLAS), muons, electrons, PF candidates (CMS)
 - Multiple collections stored in the same event.
 - Different or same event content for different streams.





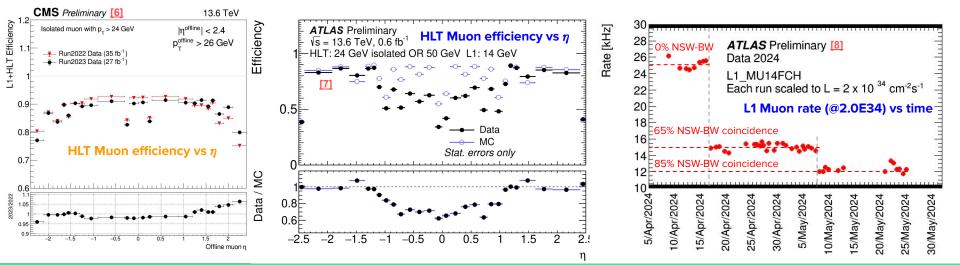


Trigger-level analysis/scouting

THE

0.85 0.9

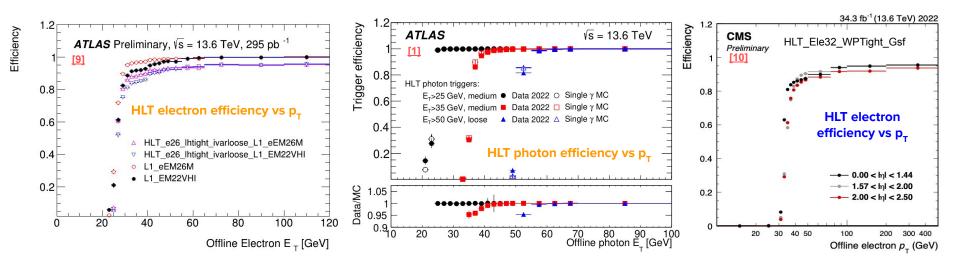
m44 [GeV]


0.8

CMS

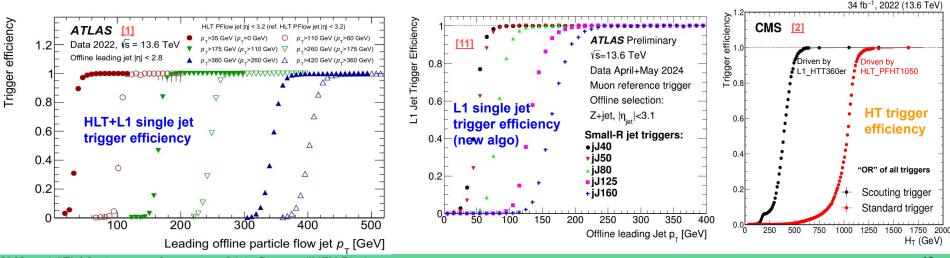
Muons

- Muon efficiency dominated by L1 trigger and isolation cut.
- L1 muon chamber inefficiency recovered during data taking.
- New Small Wheels (ATLAS) improved efficiency/rate ratio in the forward region.
 - Rate reduction: > -50% (13 kHz), with ~98% efficiency.



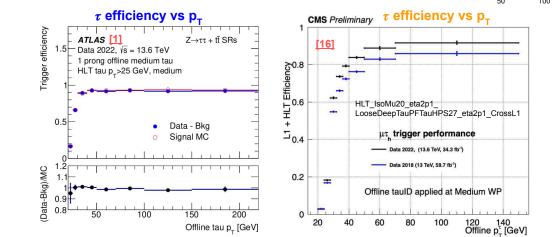
Electrons and photons

- Excellent performance
- New Phase-1 algorithm in ATLAS in L1 trigger → better efficiency



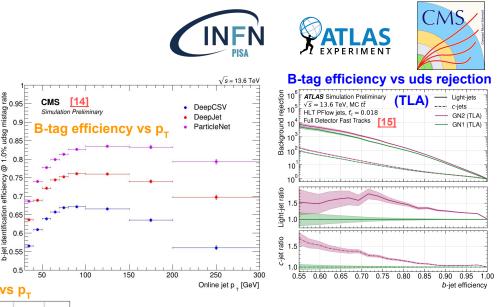
Jet and HT


- Good Jet/HT performance.
- Scouting/TLA allows a large gain in trigger acceptance.
 - Larger gain with the activation of L1_HTT280er in 2023
- New Phase-I jet triggers
 - jet Feature Extractor (jFEX) applies a more refined jet calibration than the legacy L1 jets received


Missing transverse energy

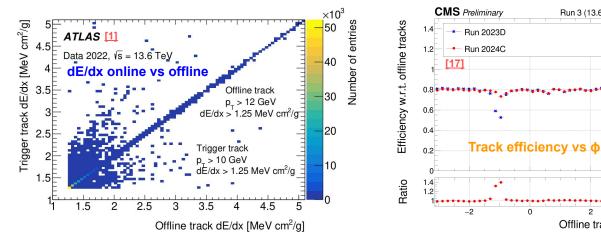
- Missing transverse energy computed as the sum of particle flow candidate
- New method based on NN deployed by ATLAS in 2024
 - improved efficiency at fixed rate

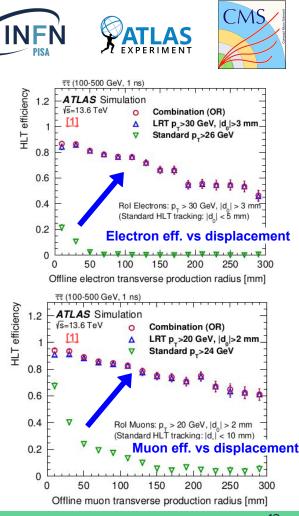
B-tagging and tau tagging


- Graph neural network used for b-tagging (ParticleNet, GN2)
- Large improvement in performance
- GN2 used in TLA

1.0%

0

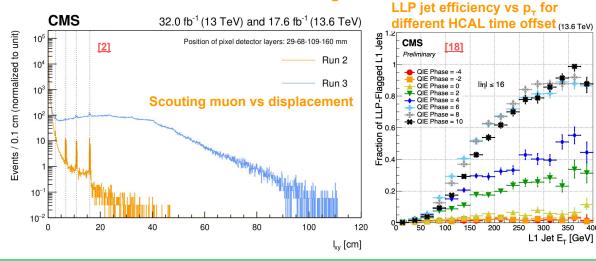

efficie

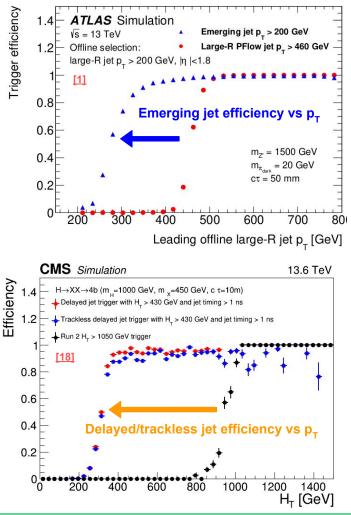


- Good performance in tau reconstruction
- Migration of tau reconstruction to ParticleNet in 2024 (CMS)

Tracking

- Excellent precision in dE/dX measurement
- Issues in few pixel modules in CMS after TS1 in 2023
 - recovered using a doublet recovery in 2024
- Development of dedicated tracking for long-lived particles

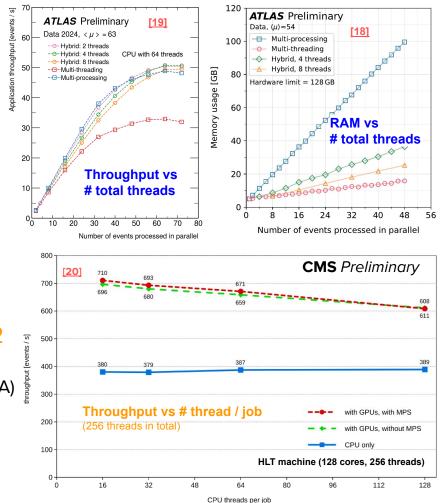



Run 3 (13.6 TeV)

Offline track ϕ

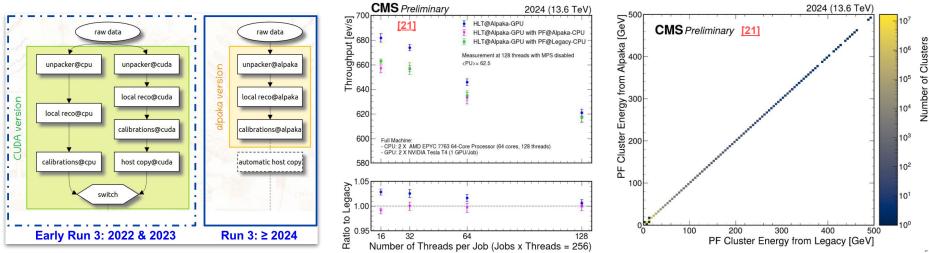
Long lived particles

- New set of triggers targeting long-lived particles
 - Trackless or displaced jets; 0
 - Measurement of time delay in ECAL and HCAL;
 - Displaced muons Ο
 - Dedicated L1 trigger
 - Included in scouting



L1 Jet E_T [GeV]

Multithreading and GPU


- Multithreading (MT) is key to fully exploit HLT farm computational power
 - inter-event, intra-event, in-algorithm parallelism;
 - usage of "data handles" to define the data dependency among modules;
 - lower memory usage.
 - AthenaMT online since 2022.
 - CMSSW support MT since 2015.
- CMS HLT farm heterogeneous since 2022 (AMD CPU + Nvidia T4):
 - **40%** of HLT reconstruction ported to **GPU** (CUDA)
 - Pixel local reconstruction
 - Pixel tracking and vertexis
 - ECAL local reconstruction
 - HCAL local reconstruction

- Alpaka is a portability library. Same code able to run on
 - multiple hardware vendors (eg. AMD GPU, Intel GPU)
 - multiple kinds of accelerators (eg. GPU, FPGA)
- Pixel and ECAL code migrated from CUDA to Alpaka in 2024.
 - HCAL local reco migration in progress.
- Part of the Particle Flow recently ported directly to Alpaka from CPU-only.

Conclusions

- Many improvements in the ATLAS and CMS triggers have been deployed with Run-3 in the framework, algorithms, and trigger strategy
- The TLA/scouting have been deeply renewed with larger rate and new collections
- The delayed reconstruction/parking strategy have been expanded in B-physics (electrons or muons in the final state) and also to hadronic final states (eg. HH and VBF) and LLP.
- Good performance in the main objects reconstruction
 - Detector issues have been promptly addressed
 - Improved performance with respect to Run-2, despite the larger pileup.
- The ATLAS software framework is now multithreaded
- CMS offloading 40% of reconstruction time to GPU since 2022
 - The migration to the portability library Alpaka is almost completed
- Looking forward to collect more data in Run-3
 - ... and to face the Phase-2 upgrade challenge!

More infos at:

<u>"Enriching the physics program of CMS via data scouting and data parking"</u>

"The ATLAS Trigger System for LHC Run 3 and Trigger performance in 2022"

Twiki: TriggerPublicResults (ATLAS) +

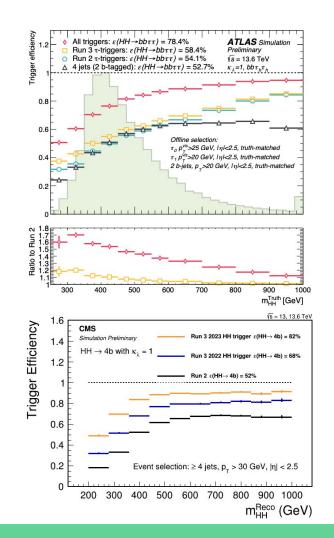
Twiki: HighLevelTriggerRunlllResults (CMS)

Related <u>talks</u> at LHCP + many posters:

Data processing techniques with focus on triggers, GPUs, etc. (plenary)

Read-out developments for HL-LHC

Novel triggering strategies (HW and SW) at the HL-LHC


Anomaly detection in ATLAS

Anomaly detection in CMS

Backup

HH trigger

- Dedicated trigger in delayed reconstruction for parking
- Better discriminator, more rate, large increase in acceptance

ATLAS trigger rate

Table 1: Example break-down of approximate total rates for physics triggers grouped by signature at luminosity of 1.8×10^{34} cm⁻² s⁻¹ and $\sqrt{s} = 13.6$ TeV. Rates are quoted for the Main, Delayed and TLA streams subtracting off the contributions from the less inclusive streams.

Signature	Rate per stream [Hz]			
	Main	Delayed	TLA	
Electron	270			
Photon	120			
Muon	290			
Tau	160			
Missing transverse momentum	140			
Unconventional Tracking	40			
B-physics and light states		240		
Jet	490	460	5000	
Jet with b-hadrons	190	160		
Combined	240	50	830	

Table 2: Summary of selected triggers in the delayed streams. The VBF di-jet trigger applies Vector Boson Fusion selection requirements to the two-jet system with the highest mass. Rates are given at luminosity of 1.8×10^{34} cm⁻² s⁻¹ and $\sqrt{s} = 13.6$ TeV.

Trigger	$p_{\rm T}$ threshold [GeV]	Rate [Hz]
VBF di-jet	1000	270
Two jets, two <i>b</i> -jets ($\epsilon = 77\%$)	80, 55, 28, 20	160
Six jets	6 × 35	140
Five jets, one <i>b</i> -jet	$5 \times 35, 25$	50
B-physics di-muon	11,6	40
$B \rightarrow K^* e e$	5, 5	170

CMS trigger rate

Table 1: Comparison of the typical HLT trigger rates of the standard, parking, and scouting data streams during Run 1 and Run 2. The average \mathcal{L}_{inst} over one typical fill of a given data-taking year and the average pileup (PU) are also reported, consistent with the scenarios reported in Fig. 2.

Year	\mathcal{L}_{inst} [cm ⁻² s ⁻¹]	PU	Standard rate [Hz]	Parking rate [Hz]	Scouting rate [Hz]
2012	$0.5 imes 10^{34}$	28	420	400	1000
2016	$0.9 imes 10^{34}$	35	1000	500	4500
2017	$1.0 imes 10^{34}$	43	1000	400	4500
2018	$1.2 imes 10^{34}$	38	1000	3000	5000

Table 7: Comparison of the typical HLT trigger rates of the standard, parking, and scouting data
streams during 2018 (Run 2), 2022, and 2023 (Run 3). The average \mathcal{L}_{inst} value over one typical
fill of a given data-taking year and the average pileup (PU) are also reported, coherently with
the scenarios reported in Fig. 2.

Year	$\mathcal{L}_{inst} \left[cm^{-2}s^{-1} \right]$	PU	Standard rate [Hz]	Parking rate [Hz]	Scouting rate [Hz]
2018	$1.2 imes 10^{34}$	38	1000	3000	5000
2022	$1.5 imes 10^{34}$	46	1800	2440	22000
2023	$1.7 imes 10^{34}$	48	1700	2660	17000

Configuration	2022	2023	
Scouting path	Rate per path [kHz]		
$1 e/\gamma$	_	9.1	
$\geq 2 e/\gamma$	—	0.3	
≥ 2 muons		3.4	
Jets or $H_{\rm T}$	_	11.0	
e/γ , ≥ 2 muons, jets or H_T	31.3	_	