Software framework for analysis at the LHC

Allison Reinsvold Hall United States Naval Academy

On behalf of the CMS, ATLAS, ALICE, and LHCb Collaborations

LHCP2024

Computing needs

•ALICE and LHCb: major upgrades between Run 2 and Run 3

- Expect to process **100x** as much data in Run 3 compared to Run 1 and Run 2
- ALICE: 1 month of Pb-Pb collisions will lead to \sim 5 PB of analysis-level data to analyze
- CMS and ATLAS: major upgrades before Run 4 (start of the HL-LHC)
 ATLAS: data processing needs will increase by ~10x due to higher instantaneous luminosity and higher pileup (3x event size)

2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
			JFMAM JJASON		JFMAMJJASOND		JFMAMJJASOND		JFMAMJJASOND		23 FMAMJJASONDJ

Goal: Minimize "time-to-insight"

 Broad community acknowledgement that scalable analysis software is key to maximizing physics output of CERN experiments

- Analysis software was one of the 7 topical groups of the Computing Frontier of the 2021 Snowmass process (<u>report</u>)
- CMS established the Common Analysis Tools (CAT) group in late 2022
 - Develop and maintain common software; provide a forum for discussion

Disclaimer: can't cover everything in this talk

Image by storyset on Freepik

Analysis software: challenging middle ground

- Can turn into the Wild West, with O(100) different analyses leveraging many different analysis 'frameworks' and code
- Not centrally managed by the experiment
- Not (in most cases) archived or publicly released

LHCP2024, Boston, MA

4

Overview

LHC experiments have different approaches (largely driven by needs of the physics programs), but some common themes, solutions, and challenges:

- Use of derived/reduced formats
- Taking advantage of vectorization/columnar processing
- Managing bookkeeping of analysis metadata
- Improving statistical analysis tools

•Writing analysis code that is reproducible and preservable (see Si Hyun's <u>talk</u> yesterday!)

Starting point: derived formats

- CMS: introduced NanoAOD in 2018
 - 100x smaller than AOD format
 - Flat ROOT trees with variables for high-level physical objects only
- •ATLAS: two new unskimmed derived formats
 - DAOD-Phys to be used for most Run 3 analyses (50 kb/evt)
 - Contains all physics objects, allowing for flexibility in object definitions
 - Long-lived particle searches typically have their own formats which are heavily skimmed
 - DAOD-PhysLite, to be used for most HL-LHC analyses (10 kb/evt)
 - Contains calibrated physics objects, after applying the common CP Tools
 - Centrally produced with frequent updates (every few weeks or months)
- •ALICE: specific data formats for different analysis groups
- Large reduction in CPU requirements and storage load

Plots from ALICE (source)

Enabling non-standard analyses - ATLAS

- Downside to derived formats: loss of information
- Makes analyses like long-lived particle searches especially challenging
- Adding additional variables for every event to a derived format is a big cost

Enabling non-standard analyses - ATLAS

- Downside to derived formats: loss of information
- Makes analyses like long-lived particle searches especially challenging
- Adding additional variables for every event to a derived format is a big cost
- •ATLAS solution: "<u>event augmentation</u>" to add non-standard variables to a new TTree in DAOD-Phys
- Additional Ttree contains only the events of interest for that stream
- New index reference branch is used to link multiple trees with different entry numbers
- Work in progress: allow baseline DAOD-Phys and event augmentations to be in separate files

```
CMS is working on an "LLPNanoAOD" format
```


8

Columnar processing – end-user analysis

 Increasingly, experiments using columnar analysis to minimize I/O cost and improve vectorization/parallelism

Two columnar approaches for user analysis:

- Python/Scikit-HEP ecosystem using uproot, awkwardarray, Coffea
- ROOT RDataFrame
- •Important that both frameworks are supported and compatible data formats are used

Scikit-HEP: Python ecosystem for HEP analyses

From Analysis Grand Challenge overview, CHEP 2023

9

Supporting multiple approaches

•CMS contributed to <u>mplhep</u> library to produce CMS-style plots using scikit-hep tools (left) and the <u>cmsstyle</u> library to make plots using pyROOT (right)

source

•All experiments contribute to different tools in the analysis ecosystem

LHCP2024, Boston, MA

Columnar processing – ALICE framework

- \mathbf{O}^2 $\mathbf{Framework}$ uses columnar format / flat tables to produce AOD format
 - Stored in ROOT files on disk, Apache Arrow format in memory
 - Zero-copy operations; underlying data doesn't need to be removed or copied in order to filter, group, or partition data
 - No nesting; tracks and collisions are connected through indices in shared memory
 - Complexity shielded from the user

Columnar processing – ALICE framework

- \mathbf{O}^2 $\mathbf{Framework}$ uses columnar format / flat tables to produce AOD format
- Stored in ROOT files on disk, Apache Arrow format in memory
- Zero-copy operations; underlying data doesn't need to be removed or copied in order to filter, group, or partition data
- No nesting; tracks and collisions are connected through indices in shared memory
- Complexity shielded from the user

Hyperloop enables analysis workflows to be run on the Grid and Analysis Facilities

- Fully integrated with O²
- Individual tasks ("wagons") are defined in JIRA and combined into trains
- "Operators" provide 24/5 support
- Automatic tests before submission and staged submission for large data samples (approval required to run on bigger datasets)
- Full bookkeeping, changelog and several comparison tools
- Mix of imperative and declarative code allowed

Vectorized processing – FunTuple in LHCb

•FunTuple: new tool for Run 3 in LHCb to produce ROOT N-tuples from raw data

- $\hfill\ {\bf Built\ on\ the\ Gaudi\ functional\ framework\ and\ the\ trigger\ (selection)\ software$
- Utilizes C++ templates and a Structure of Array (SoA) format to take advantage of vectorization
- New feature allows users to customize which observables are stored
- User-friendly python interface, rigorous unit-tests

Figure taken from <u>Comput Softw Big</u> <u>Sci 8, 6 (2024)</u>

Analysis Metadata

 Includes calibration data, dataset provenance, cross sections, data quality flags, etc.

•HSF Data Analysis Working Group published a <u>paper</u> in 2022 with recommendations for HEP metadata systems

• Led to an <u>ongoing HSF effort</u> to build a cross-experiment conditions database (API with reference implementation)

•ATLAS uses analysis software release tags within Athena which includes paths to calibration data on cvmfs

- •CMS: new effort for unified distribution of CMS metadata via cvmfs
- In parallel: designing metadata schema and tools for easy access (like the <u>Order</u> tool in python)

Proposed CMS metadata tree structure (work in progress, <u>source</u>)

Statistical analysis

- •ATLAS: Primarily uses HistFactory pdf template with RooStats/RooFit
- Can be used with HistFitter (python wrapper for HistFactory)
- First LHC experiment to release public likelihoods (see <u>here</u> for example)
- •CMS: Combine package based on RooStats / RooFit (see recent paper)
 - Recently released the first public CMS <u>stat. model</u>!
 - Model = "datacard" (human-readable configuration file) and containerized public release of the code

LHCb:

- Primarily uses RooFit, but full amplitude analysis (O(100) parameters) requires other frameworks. Mix of CPU- and GPU-based tools are used
- Functionality from ROOT 6.30 provides big improvements, including GPU backend

Statistical analysis – cross-experimental efforts

•<u>pyHF</u>: Scikit-HEP project, supported by IRIS-HEP

- First non-ROOT implementation of HistFactory pdf template
- Pure python: uses deep learning frameworks as computational backends
 - Take advantage of auto differentiation and GPU acceleration
- Large community adoption, especially in ATLAS, Belle-II

•HEP Statistics Serialization Standard (<u>HS3</u>)

- Ongoing cross-experiment effort to generalize pyHF JSON model spec
- Goal: define a code-independent standard (that could support eg RooFit, pyhf, BAT) for statistical procedures and results

Analysis software training

Training is essential to bridge the gap between expert developers and novice users ATLAS analysis from start to finish - a hands on tutoria

- CMS provides week-long <u>Data Analysis</u> Schools (DAS) but also focused Hands-ontutorial sessions (HATS) for specific topics
- •ATLAS has a new tutorial format:
 - Interactive, hands-on and project-based structure with the aim of conducting end-to-end physics analysis
- Working in teams (4-6 people)
- •LHCb emphasizes peer-to-peer instruction, with the <u>LHCb Starter Kit</u> workshop introducing new analyzers to the experiment

How to do ATLAS analysis from start to finish – a nands on tutorial.								
10–12 Oct 2022 SLAC US/Pacific timezone	Enter your search term Q							
Overview	The workshop will aim to teach basic ATLAS analysis tools by reproducing the second-generation							
Scientific Programme Timetable	leptoquark search. Introductory material for physics principles will be given, followed by hands-on activities to implement ATLAS methods yourself.							
Registration	After the first day, we will break into small groups of about 5 participants per group, each with a tutor.							
Code of conduct Travel logistics	Pre-exercises : before the workshop we will require that all participants complete some setup work. Details will be given in September, and include items such as setup of lxplus, SLAC computing account, obtain a grid certificate and more.							
Pre-tutorial account setup Introductory HEP	Target audience: primarily we are designing this tutorial for graduate students transitioning from classes to research. We welcome applications from all ATLAS researchers, including new postdocs, and even faculty who want to learn how to use ATLAS tools.							
material Arrival at SLAC	Can the tutorial be followed virtually?							
Ben Carlson Ben Carlson bcarlson@cern.ch	While we strongly encourage in-person attendance, we will make some of the introductory lectures available by Zoom. The hands-on notebooks will be possible to follow remotely. However, a large part of the tutorial will be in breakout sessions, which will be difficult to follow remotely.							

- •See <u>HSF training center</u> and <u>HSF paper</u> on analysis training initiatives
- Key takeaway: Need to **motivate and reward** training efforts

Conclusions

- "Analysis software" includes many diverse tasks:
 - Data processing/workflows
 - Analysis selections/histograms/plotting
- Statistical analysis
- Handling metadata
- Analysis preservation
- •Quality of the **tools** directly impacts the quality and quantity of the **physics**
- Increasing, innovative efforts by all LHC experiments to unify and improve tools for analysis software
- See references for lots more interesting information!

https://xkcd.com/844

LHCP2024, Boston, MA

References

•ATLAS:

- <u>Paper</u>, "Software and computing for Run 3 of the ATLAS experiment at the LHC", submitted to EPJC
- <u>Presentation</u> on event sample augmentation, CHEP2023

CMS:

- <u>Presentation</u> about the CMS CAT group, ACAT 2024
- <u>Paper</u> giving overview of Combine tool, submitted to CSBS

•ALICE:

• <u>Presentation</u> on distributed analysis in ALICE, ICHEP 2022

LHCb:

- <u>Presentation</u> on statistical analysis in LHCb, RooFit workshop 2024
- <u>Presentation</u> on offline data processing at LHCb, ICHEP 2022
- <u>Presentation</u> on Analysis Productions in LHCb, CHEP2023
- <u>Presentation</u> on Snakemake Workflows in LHCb, 2024
- <u>Paper</u> on FunTuple, published in CSBS, 2024

General references

- •"Software for analysis" <u>presentation</u> at LHCP2021:
- •"Software for analysis" <u>presentation</u> at LHCP2022:
- HSF Data Analysis Working Group (website)
- Training and onboarding initiatives <u>paper</u>
- Constraints on analysis metadata systems <u>paper</u>
- •HSF training center <u>website</u>

•<u>Report</u> from the Snowmass Computational Frontier, End User Analysis Topical Group (2022)

•pyHF <u>presentation</u>, ICHEP 2022

LHC Reinterpretation Forum <u>paper</u>, published in SciPost (2020)

Backup

Analysis preservation

•To enable combinations and reinterpretations, need to be able to rerun analysis on new samples...

1.Capture software	2. Capture commands	3. Capture workflow	
Individual analysis stages in an executable way (including all dependencies)	How to run the captured software?	How to connect the individual analysis steps?	Figure credit C. Lange

•HEPData is an open-source, publicly available repository for HEP results, used by many experiments

 Variety of tools for analysis preservation: Rivet, Reana, Recast, SnakeMake, LAW/Luigi, and others

See Si Hyun's <u>talk</u> yesterday on this topic!

Analysis preservation

•To enable combinations and reinterpretations, need to be able to rerun analysis on new samples...

LHCb strategy:

Check out recommendations of LHC Reinterpretation Forum