A Large Ion Collider Experiment

Simulation & Performance tools for ALICE 3

Cas van Veen (they/them) for the ALICE Collaboration Physikalisches Institut, Ruprecht-Karls Universität, Heidelberg

ALICE 3 - A short overview of the physics program

- High-precision beauty measurements
- $D\bar{D}azimuthal correlations$
- Multi-charm baryons, P-wave quarkonia, exotic hadrons
- QGP thermal radiation
- Chiral symmetry restoration
- Fluctuations of conserved charges

For more information, see the Letter of Intent <u>https://arxiv.org/pdf/2211.02491.pdf</u>

ALICE 3 - A short overview of the detector concept

Novel and innovative detector concept

- Compact and lightweight all-silicon tracker
- Retractable vertex detector
- Extensive particle identification
- Large acceptance
- Superconducting magnet system
- Continuous read-out and online processing

	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	
	Run 3			LS3			Run 4			,		LS4	
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	
ALICE 3	Scoping Document, WGs kickoff	Select technolog concept p	ion of gies, R&D, rototypes	R&D, TDRs, proto	engineered types		Construc	tion	C	ontingency a ecommission	nd Ins ing co	tallation and mmissioning	

- 2023-25: Scoping Document, selection of technologies, small-scale prototypes (~25% of R&D funds)
- 2026-27: Large-scale engineered prototypes (~75% of R&D funds) → TDRs and MoUs
- 2028-30: Construction and testing
- **2031-32:** Contingency and pre-commissioning
- **2033-34:** Preparation of cavern, installation
- **2035-** : Data taking

	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
	Run 3			LS3				Run	4		LS4	
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q	4 Q1 Q2 Q3 Q4
ALICE 3	Scoping Document, WGs kickoff	Select technolog concept p	tion of gies, R&D, prototypes	R&D, TDRs, proto	engineered types		Construct	tion	Co	ontingency ar ecommission	nd In ing co	stallation and ommissioning

- 2023-25: Scoping Document, selection of technologies, small-scale prototypes (~25% of R&D funds)
- 2026-27: Large-scale engineered prototypes (~75% of R&D funds) → TDRs and MoUs
- 2028-30: Construction and testing
- 2031-32: Contingency and pre-commissioning
- 2033-34: Preparation of cavern, installation
- 2035- : Data taking

Cas van Veen (they/them), Physikalisches Institut Heidelberg

- Guarantee the **success** of the **physics program** upon considered layouts options
- Estimate the impact of variations on experimental setups
 - Layouts: geometries, materials
 - Magnetic field: intensity, maps
 - Project on **resources** and **cost estimations**
- Ongoing: studies focusing on specific scoping topics in parallel
 - Studying the **interplay** of **options** or **features**

O² contains the code for **reconstruction**, **calibration** and **simulation** for the ALICE experiment at CERN for Run 3 & 4 and in particular for **ALICE 3** for **Run 5+6**.

Arxiv: <u>https://arxiv.org/abs/2402.01205</u> Github: <u>https://github.com/AliceO2Group/AliceO2/tree/dev</u>

ALICE 3 Geometry in O²

Cas van Veen (they/them), Physikalisches Institut Heidelberg

ACTS Studies for ALICE 3

ACTS: A Common Tracking Software Project

"Experiment-independent toolkit for (charged) particle track reconstruction in (high energy) physics experiments implemented in modern C++"

 $10^{-1} + B = 1.0 \text{ T, } \pi + \eta = 0$

η

Even with a reduced magnetic field of 1 T, the transverse momentum resolution is still acceptable for our physics goals.

Cas van Veen (they/them), Physikalisches Institut Heidelberg

Look-Up Tables creation for Fast Simulations - example

Look-Up Tables (LUTs) allow for fast simulations

Efficiencies and p_T resolution for $\pi^{\pm}, \mathrm{K}^{\pm}, \mathrm{p}, \bar{\mathrm{p}}, \mu^{\pm}, \mathrm{e}^{\pm}$ are in these LUTs

These are used for the on-the-fly simulations

2.5

Fast On-The-Fly Simulations

These simulations are fast and lightweight, which allow for quick analyses if the layout of the geometry changes

Includes

- PID smearing for RICH
- Time response smearing for oTOF

Example: RICH N_σ separation for e^ and π

These On-The-Fly simulations allows for an increase in speed of at least 10x in comparison to full simulations

Non-Ionising Energy Loss obtained with PYTHIA 8 + Fluka simulations.

Corresponds to the pp integrated luminosity for Runs 5+6 $L_{
m int}=18\,{
m fb}^{-1}$ and $B=2\,{
m T}$

Low's theorem predicts the soft inner bremsstrahlung photon spectrum with a characteristic 1/E dependence

Most experiments in the past show an excess of a factor 4-8 above the photon spectrum predicted by Low's theorem

=> Soft photon puzzle

Forward Conversion Tracker aims to measure the soft photon spectrum via conversions to e+e-

 p_T in the range of 1 to 10 $\,{
m MeV}/c$

Simulation studies of the FCT for ALICE 3 in O²

Detailed simulation within the O2 simulation framework with

- PYTHIA for background generation

- External signal generator for Low's theorem

- GEANT4 for particle propagation

Gives a promising signal / background ratio

The simulation and performance tools of ALICE 3 give us access to a wide range of studies and allow us to test our designs

ACTS studies allow us to investigate performance with changing layouts

On-the-fly simulations aided by the LUTs allow for fast analyses if e.g. the geometry changes

VMC simulation in O² is used for

- Radiation load studies
- Responses of tracking detectors (hits)