Pileup suppression with timing detectors

Mengqing Wu (Radboud University & Nikhef) On behalf of the ATLAS HGTD group

LHCP 2024, Boston, Oct 3-7 2024

Challenges on Detectors at HL-LHC

High pileup challenge at HL-LHC, where instantaneous luminosity is 5 times higher, giving a total integrated luminosity of up to 4 ab⁻¹

• up to average 200 inelastic pp collisions

Challenges on the detectors

- to separate the overlapped vertices and objects → motivates not only finer spatial measurements (ITK) but also timing measurements (HGTD)
- performance v.s. accumulated luminosity (radiation hard) •

Exploit the 4th Dimension: Time

Interactions spread not only along z but also in t

(RMS ~ 175 ps), with $\sigma_t < 50$ ps

→ pile-up suppression by a factor of ~6

Finer spatial measurements by ITK

M. Wu

Timing is crutial to the success of the physics programme in high |n| region

 \rightarrow as impact parameter deteriorates with $|\eta|$

High Granularity Timing Detector

Pixelated detector providing **highly precise time** measurements $< 50 \, \mathrm{ps}$ in the forward region

- Four layers of sensors (different overlap) depending on the radius): **1 - 4 hits per track**
- Precise luminosity measurements with 1% ulletluminosity uncertainty (bunch-by-bunch 40MHz readout - very challenging readout design)

Detector specs:

More luminosity see <u>Simone's talk</u> on Friday

- $z \sim 3.5 \,\mathrm{m}$ from the nominal interaction point (installed in the gap between barrel and end-cap calorimeter)
- Forward region: $2.4 < |\eta| < 4.0$
- Radiation hard up to:

2.5 x 10¹⁵ n_{eq}/cm² (w/ Safety Factor=1.5) for sensor; 2 MGy (w/ Safety Factor=2.25) for electronics.

Low Gain Avalanche Diode

Low Gain Avalanche Diodes (LGAD) - a **novel silicon sensor** technology

- Key feature the gain layer, providing a modest gain of 10 50 comparing to ulletAPD and SiPM (radiation deteriorates the gain)
- Picosecond fast timing features (intrinsic sensor timing ulletconstant): high drifting velocity (fast, gain), thin active layer (fast), meanwhile large signal (gain, σ_t).

HGTD LGAD geometry

- Thin: 50 µm thick
 - Compromise between Landau fluctuations contributing to the time resolution, charge/bias property etc.
- <u>Pad size: 1.3 x 1.3 mm²</u>
 - Compromise between rise time, capacitance, occupancy, fill factor...
- Strong signals: 10 fC (w/ 20 gain) unirradiated and 4 fC (w/ 8 gain) end-of-life

Single Hit Time Measurement - Readout Electronics

Time Resolution is dominant by three components*

* This equation has other variations, depending on how one categories the resource; the format here is commonly used in detector R&D community

M. Wu

 $= \sigma_{\text{TimeWalk}}^2 + \sigma_{\text{jitter}}^2 + \sigma_{\text{TDC}}^2$

Single Hit Time Measurement - Readout Electronics

* This equation has other variations, depending on how one categories the resource; the format here is commonly used in detector R&D community

M. Wu

Single Hit Time Measurement - Readout Electronics

Time Resolution is dominant by three components*

* This equation has other variations, depending on how one categories the resource; the format here is commonly used in detector R&D community

M. Wu

Pileup suppression with timing detector, LHCP2024

Challenging to build such a readout system to fulfil the time requirement

Requires: ☐ High Signal-to-Noise \Box Short rise time t_r

Largest component Depending on detector geometry and system electronic noise

TDC Granularity (bin size) & reference clock stability, requiring

Trade-off: fine TDC binning \equiv power hunger ☐ High clock performance: stability and jitter

> Overall clock distribution needs to be $< 15 \, \text{ps}$

It is important to notice that, intrinsic sensor contribution (geometry, technology driven) is NOT discussed here, partial sensor contribution is considered under the *TimeWalk* term in this function.

Challenges of Event Reconstruction

Challenges in track-to-vertex association and track-to-object association:

Adding time to track-to-vertex association

• Spatial-based association: track z_0 geometrically compatible in z-axis with respect to the vertex position

- Additional time-based association:
 - If knowing the hard scatter (HS) vertex time t_0

$$\frac{|t_{\text{trk}} - t_0|}{\sigma_t} < s = 2(3)$$

- **Challenging** t_0 **determination:** (1) limited $|\eta|$ • coverage; (2) HS vertex t_0 measurement built upon the prior track-to-vertex association
- If t₀ unknown: so-called self-tagging approach for given reconstructed object, check time consistency to clean/remove time incompatible components

Adding time to suppress pile-up jets

such as R_{P_T} (JHEP 04 (2008) 063) and JVF (ATLAS-CONF-2014-018) for the jet-vertex tagging

Taking ITK only scenario as benchmark to see how HGTD time measurement adds.

Pile-up jet tagging improves by up to 40% for low P_T forward jets.

M. Wu

Pileup suppression with timing detector, LHCP2024

Use the self-tagging approach to reduce pile-up track contamination thus improving discriminant variables

Double pile-up jet tagging is up to 1.9-2.7 times better → Good potential for a VBF/VBS HLT using HGTD.

Adding time to improve electron isolation efficiency

- The efficiency of *track-based lepton isolation* $\epsilon(P_T^{1SO})$ is defined as the **probability** that no additional track with $P_T > 1 \text{ GeV}$ is within a cone of $\Delta R = 0.2$ from the electron track
- This variable is sensitive to pile-up density
 - can be recovered by applying a time consistency criterion to reduce the pile-up track contamination in the isolation cone
- With time: this efficiency is improved by about 10% for local pile-up density at 1.6 vertices/mm (mean value at HL-LHC)
- Further confirms the impact of pile-up suppression with time at physics object level

Conclusion and outlook

- overlapped vertices and physics objects
 - additional precise timing measurement helps, especially in the forward region where impact parameter measurements deteriorate.
 - HGTD based on LGAD technology is under construction to provide a track time measurement with a resolution better than 50 ps in the forward region $2.4 < |\eta| < 4$ and a precise luminosity measurement (which can be vital as HL-LHC physics goals is dominant by precision measurements)

Challenges on building such a detector to achieve a better than 50ps time resolution ullet

- The LGAD sensor needs to meet the radiation hardness requirement while providing an intrinsic time resolution better than 50ps
- Besides, the entire readout electronic chain needs to fulfil time requirement various development ulletchallenges to tackle to mitigate effects of time walk, noise jitter and TDC.

The significantly increased instantaneous luminosity impose a great challenge on distinguishing the

Backup

You've got one

HGTD Zoom-in: Detector Module

Pileup suppression with timing detector, LHCP2024

M. Wu

Choice of detector geometry

Active thickness ~50 (+/-5) µm

- Iarge capacitance (noise) can be offset by gain -> good S/N
- In order to reach the desired time resolution the thickness is limited to <80 μm (Landau fluctuations)
- thinner sensors have steeper Q-V (difficult to control the bias voltage over a single module)

Cell size 1.3x1.3 mm² determines:

- capacitance (dominated by capacitance to the back, interpixel capacitance ~0.5 pF – measured and shown at PDR)
- assures that weighting field is 1/thickness and that the role in contribution to the time walk is negligible – dominated by the $\sigma_{\rm lf}$
- pixel hit occupancy and fill factor (indirectly)

Single Event Burnout

- high bias voltage

 - destructive breakdown
 - and RD50
 - <~550V for 50µm)

ALTIROC1+LGAD TB performance

Slide from G. Kramberger

ATLAS Collaboration Week "Ready for Run 3" - 2022.6.21

Time Resolution: Jitter

Time Resolution is dominant by three components*

 $\sigma_t^2 = \sigma_{\text{TimeW}}^2$

$$\sigma_{\rm Valk}^2 + \sigma_{\rm TDC}^2 + \sigma_{\rm TDC}^2$$

Jitter

- Amplitude fluctuations affect the exact threshold crossing time
- Fluctuations come from:
 - Thermal noise of the pre-amplifier
 - Large signal and/or high gain (power) ulletmitigates this effect

Local fluctuations in the ionisation density

Clock and Time Measurement

Time Resolution is dominant by three components*

* This equation has other variations, depending on how one categories the resource; the format here is commonly used in detector R&D community

M. Wu

Clock

All time measurements are done w.r.t. a reference clock

Every hop introduce noise over the clock

Long cable can introduce time drift/wander (slow component) and jitter (fast component)

Actions:

- Compensation on hardware to ensure a precise clock distribution - <u>TCLink</u>
- Calibration of time offsets challenging, stay tuned for our results!

4D Tracking: A Glimpse into the Future

To realise a **'real' 4D tracking**

	To obtain temporal measurement $\begin{bmatrix} 1 \\ 2 \\ - \end{bmatrix}$ on every track - with full 4π coverage	• 1400	
Re 4D	placement plan provides a chance to enable tracking at HL-LHC:	[;] 1200	
	Every 2 ab ⁻¹ : <i>innermost ITK pixel layers</i> and <i>HGTD middle ring</i> to be replaced	1000	
		800	
	Every 1 ab-1: HGTD inner ring to be replaced	600	
Ch	allenges:	400	
	Novel 4D tracking algorithms to built: use time information in track finding and fitting	200	
	Unknown impact of 4D tracking on detector geometry choice	()

4D Tracking: A Glimpse into the Future

Pioneer simulation studies have been made using simulations

• Time of every vertex (incl. central vertices) can be reconstructed

Performance potentials:

- Strong pileup suppression
- Full η coverage for a better HS vertex t_0 determination

M. Wu

Pileup suppression with timing detector, LHCP2024

Events

- 800 - 600 400 time [ps] - 0 -200 -400 -600

Pioneer simulation studies have been made using simulations

B-tagging improved up to a factor 3.5 using timing information also in the central region

