



# Jet Cross-Section Measurements in pp collisions **Jennifer Roloff**, on behalf of the ATLAS and CMS collaborations

**LHCP 2024 Northeastern University** 





# Why jet cross section measurements?

- Important inputs to parton distribution function (PDF) fits
  - Particularly important for aspects like the high-x gluon PDF
  - ► Not calculable from first principles → need measurements!
- Tests of perturbative QCD predictions
  - Important to study behavior of new predictions
- Sensitive to the strong coupling constant and its running
  - Able to probe much higher energy scales for the running than other strategies

# Why jet cross section measurements?

- Important inputs to parton distribution function (PDF) fits
  - Particularly important for aspects like the high-x gluon PDF
  - Not calculable from first principles  $\rightarrow$  need measurements!
- Tests of perturbative QCD predictions
  - Important to study behavior of new predictions
- Sensitive to the strong coupling constant and its running
  - Able to probe much higher energy scales for the running than other strategies
- Showing three measurements that highlight each of these applications
  - See also <u>2401.11355</u> for a nice jet cross section measurement that I can't cover today



# jet cross-sections

Double and triple differential dijet

## dijet cross section measurements CMS

- Dijet cross-sections are sensitive to the gluon PDF and the strong coupling  $\alpha_{\rm S}$
- CMS measures this double and triple differentially in the jet  $p_T$ , and various rapidity observables
  - 3D in  $y_b$ ,  $y^*$ , and  $p_T$
  - 2D in ymax, pT
- Different regions of phase space dominated by different parts of the PDF







## dijet cross section measurements CMS

- - 3D in  $y_b$ ,  $y^*$ , and  $(p_T \text{ or } m_{ii})$

• 2D in  $y_{max}$ , (p<sub>T</sub> or  $m_{jj}$ )

- Selecting different topologies to improve sensitivity to PDFs
- Comparing to NNLO predictions
  - Generally good agreement across a wide range of jet p<sub>T</sub>





# dijet cross section measurements

- CMS
  Comparing PDF fits for HERA + 2D to HERA + 3D dijet measurements
  - Both provide good constraints on the high-x gluon PDF
    - Slightly better constraints from the 3D measurement







# Measurement of jet cross sections and their ratios

## Jet cross sections and their ratios ATLAS

- Measuring several observables
  - $H_{T_2}$ :  $p_{T_1} + p_{T_2}$ 
    - Good test of fixed order predictions
  - $\blacktriangleright$  m<sub>j1j2</sub>,  $\Delta y_{j1j2}$ , m<sub>jj</sub>, max,  $\Delta y_{jj}$ , max
    - parton showers
    - Relevant for modeling electroweak VBS and VBF processes
- Measuring the inclusive 2,3,4,5-jet cross sections, and their ratios





Sensitive to certain types of resummation effects, and difficult to model with

In particular  $R_{32} = 3$ -jet inclusive cross-section / 2-jet inclusive cross-section



## Jet cross sections and their ratios ATLAS

- Several improvements to the treatment of the jet energy scale uncertainties
  - Factorize differences between different Monte Carlo predictions into three components
  - Improved treatment of single particle uncertainties, including adding new in situ measurements of single particle response
- Many more details in the paper!





10

# Jet cross sections and their ratios ATLAS

- Taking the ratio results in much smaller uncertainties
- Very precise measurement, dominated by jet uncertainties
  - Modeling uncertainties reduced through MC-to-MC calibrations, which reduce double-counting with jet uncertainties
  - Jet energy scale uncertainty reductions directly translate to smaller uncertainties, especially for H<sub>T2</sub>



# Jet cross sections and their ratios ATLAS

- Comparing R32 for HT2 to NLO and NNLO predictions
  - NLO and NNLO predictions both agree within uncertainties, but better agreement from NNLO
- Theory uncertainties include PDF, scale, and statistical uncertainties
  - Scale uncertainties dominate for NLO,
  - NNLO predictions have reduced scale uncertainties, but large statistical uncertainties
- $\sim$  2 $\rightarrow$ 3 NNLO predictions are a significant step forward in the theoretical precision of jet production
  - Computationally difficult to run  $\rightarrow$  would benefit from improvements to the prediction





# Jet cross sections and their ratios ATLAS

- Dijet mass is difficult to model accurately
  - Most Monte Carlo predictions are not able to model this behavior well
- Comparing to a prediction from HEJ
  - Includes resummation effects not included by parton showers
  - Models the data well in certain regions, and better than most MC predictions



# $R\Delta\Phi(pT)$

 $R_{\Delta\phi}(p_{\rm T}) = \frac{\sum_{i=1}^{N_{\rm jet}(p_{\rm T})} N_{\rm nbr}^{(i)}(\Delta\phi, p_{\rm Tmin}^{\rm nbr})}{N_{\rm jet}(p_{\rm T})}$ 

- Numerator includes pairs of jets with  $2\pi/3 < \Delta \Phi < 7\pi/8$ 
  - Reducing contributions from 2-jet case by excluding back-to-back jets in numerator
- Sensitive to the strong coupling constant

 $\Delta \phi \approx \pi$ 



- Fitting  $R_{\Delta \Phi}(p_T)$  as a function of  $p_T$  using NLO predictions
  - Good agreement with theory predictions



- Uncertainties dominated by theoretical scale uncertainties
  - Need NNLO predictions for better precision
- Agrees with the world average
  - Note: only comparing to other hadron collider NLO extractions of  $\alpha_s$

| CMS                   |     |      |     | Т  | hec      | ory | a   | t |
|-----------------------|-----|------|-----|----|----------|-----|-----|---|
| CDF 1.96 TeV (1j)     |     |      |     |    |          |     |     |   |
| ZEUS 318 GeV (1j)     |     |      |     | -  |          |     |     |   |
| D0 1.96 TeV (1j)      |     | -    |     | •  |          |     |     |   |
| Mal.&Star. 7 TeV (1j) |     |      |     | •  |          |     | -   |   |
| H1 319 GeV (1j)       |     |      |     | •  |          |     |     |   |
| CMS 7 TeV (1j)        |     |      | -   |    | •        | -   | -   |   |
| CMS 8 TeV (1j)        |     |      |     | •  | •        | -   |     |   |
| Britzger (1j)         |     |      | -   |    | •        |     | -   |   |
| CMS 8 TeV (2j)        |     |      |     |    | •        |     |     |   |
| ZEUS 318 GeV (R32)    |     | -    |     |    | •        |     |     |   |
| D0 1.96 TeV (RdR)     |     |      |     |    | <b>†</b> |     |     |   |
| CMS 7 TeV (R32)       |     |      |     |    |          |     |     |   |
| CMS 7 TeV (m3j)       |     |      |     | •  |          |     |     |   |
| ATLAS 7 TeV (TEEC)    |     |      |     |    |          |     |     | - |
| ATLAS 7 TeV (ATEEC)   |     |      |     |    | •        |     |     |   |
| H1 319 GeV (nj)       |     |      |     |    | 1        |     |     |   |
| ATLAS 8 TeV (TEEC)    |     |      |     |    |          |     |     |   |
|                       |     |      |     |    |          |     |     |   |
| CMS 13 TeV (RA(nT))   |     |      |     |    |          |     |     |   |
|                       |     |      |     |    |          |     |     |   |
| 0.09 0.095 0.1 0.10   | 5 0 | ).11 | 0.1 | 15 | 0.12     | 2 0 | .12 | 5 |



- Test the running of  $\alpha_{\rm S}$  by fitting several different p<sub>T</sub> ranges separately
  - Scale taken to be the jet p<sub>T</sub>
- Tests running of  $\alpha_{\rm S}$  to high scales
- Good agreement with the world average for the running of  $\alpha_{\rm S}$ 
  - Probe similar range as other 13 TeV  $\alpha_{\rm S}$ extraction by the ATLAS experiment at **NNLO** 
    - Only NLO extractions are shown in CMS comparison

## 2404.16082





17

|      | -      |
|------|--------|
|      | -      |
| )15) |        |
| -    | _      |
| 5)   | _      |
| 7)   | _      |
| n'   |        |
| )    |        |
| 8)   |        |
|      |        |
|      |        |
|      | -      |
|      | -      |
|      |        |
|      | _      |
|      | _      |
|      | _      |
|      | _      |
|      |        |
|      |        |
|      |        |
|      |        |
|      |        |
|      |        |
|      | $\neg$ |
|      | -      |
|      | -      |
|      | -      |
|      |        |
|      |        |



# Summary

- Jet cross-section measurements provide important tests of QCD
  - fixed order predictions
- NNLO predictions are becoming increasingly standard
  - uncertainties
- precise measurements
  - Requires understanding of detector effects and details of Monte Carlo simulations

• Constraints on PDFs, extractions of  $\alpha_{\rm S}$  and its running, and comparisons to

Enables stronger tests of QCD that are less dominated by theoretical scale

Improvements to jet reconstruction and calibration directly translate to more

thanks!

## jet fragmentation ATLAS

- Modeling of gluon p<sub>T</sub> response differs across generators
- Obvious trends from the hadronization model
  - Calorimeter response depends on the type of hadron, not just the energy and rapidity
  - Retuned Sherpa with LEP data on baryon and kaon fractions — significant effect on the p<sub>T</sub> response!

μ(p<sub>T</sub><sup>reco./p</sup> ЫN  $\mu(p_T^{reco./p_T^{true}})$ 





## jet fragmentation ATLAS

- Modeling of gluon p<sub>T</sub> response differs across generators
- Obvious trends from the hadronization model
  - Calorimeter response depends on the type of hadron, not just the energy and rapidity
  - Retuned Sherpa with LEP data on baryon and kaon fractions — significant effect on the  $p_T$  response!

vthia8 m(p\_eco./p Ы М  $\mu(p_T^{reco./p_T^{true}})$ 







# jet fragmentation ATLAS

- Modeling of gluon p<sub>T</sub> response differs across generators
- Obvious trends from the hadronization model
  - Calorimeter response depends on the type of hadron, not just the energy and rapidity
  - Retuned Sherpa with LEP data on baryon and kaon fractions — significant effect on the  $p_T$  response!





## dijet cross section measurements CMS

- Relatively good agreement with the theory predictions across most rapidities
  - Slightly worse agreement for very high dijet masses
- Small theory uncertainties thanks to **NNLO** predictions



## dijet cross section measurements CMS .20

- Electroweak corrections important for high dijet mass
- Nonperturbative corrections relatively small, with uncertainties larger at smaller dijet masses
- Perturbative convergence reasonable, though worse at high dijet mass



2000 5000  $m_{1,2}$  (GeV)



## dijet cross section measurements CMS

- Uncertainties generally dominated by uncertainties on the jet energy scale
- At high  $p_T$ , the statistical uncertainties begin to dominate
  - Using more data will improve the reach of this region, which is very relevant for constraining the high-x gluon PDF









- Small nonperturbative corrections and uncertainty
- Electroweak corrections are typically less than 5%
  - Largest at high pT



- Using Powheg + Herwig and Powheg + Pythia at LO and NLO
  - NLO has 2->2 at NLO and 2->3 at LO
- Comparing to two different Pythia8 tunes
  - Tunes based on LO predictions





- Measuring differential in the jet  $p_T$  and the rapidity
  - Spans 7 orders of magnitude!
- Relevant for PDFs and  $\alpha_s$ , and provides reference for heavy collisions





Dominated by the jet energy scale uncertainties

Energy resolution effects are subdominant



- For NLO predictions, scale uncertainties dominate
- NNLO predictions significantly reduce scale uncertainties
  - PDF uncertainties dominate for high pT
  - Nonperturbative uncertainties dominate at low рт
- Jet scale taken to be p<sub>T,jet</sub> or H<sub>T</sub>
  - Generally worse agreement for p<sub>T,iet</sub>
  - Consistent with other studies on the preferred scale choice



- Jet scale taken to be  $p_{T,iet}$  or  $H_T$ 
  - Generally worse agreement for pT, jet









- Dominated by jet energy scale uncertainties, with jet energy resolution uncertainties subdominant
- Nonperturbative corrections increase at low p<sub>T</sub>, but very small at high jet p<sub>T</sub>

