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Machine-learning-based unfolding analysis

Measurement of Event Shapes in |NEW|
Minimum Bias Events at Vs = 13 TeV (CMS)

A simultaneous unbinned differential cross‘NEW‘
section measurement of twenty-four Z+jets
kinematic observables with the ATLAS detector



https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-23-008.
https://arxiv.org/pdf/2405.20041

Machine-learning-based unfolding measurement of event shapes
Jet-like Isotropic

Event shape observables: | . B
Variables describing the “shapes " of the events
— Functions of the momentum of the final state particles
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Machine-learning-based unfolding measurement of event shapes
Jet-like Isotropic

Event shape observables: | . B
Variables describing the “shapes " of the events
— Functions of the momentum of the final state particles
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Machine-learning-based unfolding measurement of event shapes

Jet-like Isotropic |~ ,
Event shape 0bSEIVables: . . 4
Variables describing the “shapes " of the events
— Functions of the momentum of the final state particles
-— . 18Tev
:CMS +Data —— CP1 .
[ Preliminary bk o ros <+— An example: transverse sphericity

others: (transverse) thrust, broadening, isotropy etc.
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Unfold with a machine-learning-based algorithm: Multifold*

Normalized Events/Bin Width
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StTracks. (high purity, pt>0.5 GeV) — theoretical interpretation, generator tuning ...

* https://arxiv.org/abs/1911.09107, https://arxiv.org/abs/2105.04448
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Unbinned multi-dimensional unfolding and uncertainty estimation
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What it actually did: learn the differences in the distributions —
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Unbinned multi-dimensional unfolding and uncertainty estimation

A, T Ly 2
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What it actually did: learn the differences in the distributions —
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«— Atypical binary classifier to distinguish two sets

«— We can use the classification scores to weight MIC to data, and
nominal sample to systematic variations
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Unbinned multi-dimensional unfolding and uncertainty estimation

University of Zurich

«— Atypical binary classifier to distinguish two sets

— We can use the classification scores to weight
nominal sample to systematic variations

MC to data

Event-wise unfolding — the result independent of binning

The actual unfolding in iterations:
» Step 1: weight MIC to data, at detector level

» Step 2: pull back the weights to particle(truth) IeveI)

Weijie Jin

and




<— We can use the classification scores to weight|ViC to data| and
nominal sample to systematic variation

Event-wise unfolding — the result independent of binning

The actual unfolding in iterations:
» Step 1: weight MIC to data, at detector level
» Step 2: pull back the weights to particle(truth) level

Event-wise uncertainty template — unbinned unfolding uncertainty & covariance
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Unfolding results

Simultaneously unfold all the variables for
ML-based weighting

Add a variable to the unfolding:

Methods based on binned histograms:
Add another dimension in binning
— require higher statistics
— more computation in simulation and unfolding

This method:
Add a feature in the ML training and evaluation
— much easier to scale up the dimensions
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Simultaneously unfold all the variables for
ML-based weighting

Add a variable to the unfolding:

Methods based on binned histograms:
Add another dimension in binning
— require higher statistics
— more computation in simulation and unfolding

This method:
Add a feature in the ML training and evaluation
— much easier to scale up the dimensions

Unfolding results as weighted MC events
«— 2D visualisation of transverse sphericity in
charged particle multiplicity slices

Customise binning and variable choices are
supported with the event-wise unfolded data



https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-23-008.
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More isotropic data than MC:
multi-parton-interaction model? collective effects? instantons?
— We provide the unfolded results for theoretical interpretation

Simultaneously unfold all the variables for
ML-based weighting

Add a variable to the unfolding:

Methods based on binned histograms:
Add another dimension in binning
— require higher statistics
— more computation in simulation and unfolding

This method:
Add a feature in the ML training and evaluation
— much easier to scale up the dimensions

Unfolding results as weighted MC events
«— 2D visualisation of transverse sphericity in
charged particle multiplicity slices

Customise binning and variable choices are
supported with the event-wise unfolded data



https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-23-008.

Unbinned uncertainty estimation
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ML-based reweighting — Uncertainty templates as sets of weights on nominal MC

— Continuous nuisance parameters can be assigned to the event-weights

— Uncertainty covariance can be estimated from toy experiments
- Unfold with “bootstraps” of MC with variations of nuisance parameters — Syst. Unc + Covariance
- Unfold with “bootstraps” of resampled data — Stat. Unc. + Covariance

. CMS Preliminary
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Example: correlation of the syst. unc of sphericity
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https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-23-008.

Unbinned uncertainty estimation

ML-based reweighting — Uncertainty templates as sets of weights on nominal MC
— Continuous nuisance parameters can be assigned to the event-weights
— Uncertainty covariance can be estimated from toy experiments
- Unfold with “bootstraps” of MC with variations of nuisance parameters — Syst. Unc + Covariance
- Unfold with “bootstraps” of resampled data — Stat. Unc. + Covariance
. CMS Preliminary

= 1.00
&
o7 Customise binning and variable choices are
,,,,,,,,,,,,,,,,, Ho.50 supported with the event-wise unfolded data
""""""""""""""""" 50.25
,,,,,,,, | +
-0.00
1025 Uncertainties+Covariance on the results
-0.50

.53 -0.56 -0.47 -0.40 -0.41
0.31 -0.52- -0.52 -0.47 -0.36
-0.75
-0.45-0.30 -0.31 -0.12 -0.03 -0.08
- I CMS-PAS-SMP-23-008

0.0 0.060.120.180.24 0.3 0.36 0.420.48 0.56 0.64 0.72 1.0

Example: correlation of the syst. unc of sphericity

The way to improve the usability of unfolded results
* Publish the unbinned results on event-level
* Publish the weight sets from toy experiments
— Unc. + Covariance
University of Zurich Weijie Jin

Unbinned fit for theoretical interpretation

(Or any binning chosen by the user)

:: Unbinned generator tuning


https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-23-008.

Machine-learning-based unfolding of Z+jet kinematic observables @

Leading jet 1 Observables to be measured AT LAS
 Kinematics of the di-muon system from Z decay EXPERIMENT
HH
Pr Yup

— probe Z boson production kinematics
» Kinematics of the two muons

1 2
p; ’pg d ﬂﬂl’ ’7/,52’ ¢,ul’ ¢/,t2

— probe Z boson decay kinematics
« Kinematics of two leading charged particle jets
i1 2
P]T ,P]T » Vit Yoo ¢j1’ ijz
Muon pair from Z decay « Substructure of the two leading charged particle jets

_ : RTPATRERI | B )
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Leading jet 2

Also unfolded with Multifold* —>  Simultaneous unfolding of 24 variables

* https://arxiv.org/abs/1911.09107, https://arxiv.org/abs/2105.04448
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Unfolded results are event-wise
(weighted MC events)

«— 1D visualisation of dilepton pt and

leading jet 2-subjettiness(7,) / 1-subjettiness(z,)
Unfolded data versus Sherpa and
MadGraph+Pythia predictions


https://arxiv.org/pdf/2405.20041

Unfolding results
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«— 1D visualisation of dilepton pt and
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Unfolded data versus Sherpa and
MadGraph+Pythia predictions

75, T are unfolded,

but 7,/7, is not directly unfolded
— The unfolding preserves the relation
among variables
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Event-level unbinned unfolding results
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Perturbations on the input samples according to uncertainties

— Unfold with these alternative samples
— Unfolding uncertainty as alternative weights

Leading jet 7o /7

:> Unfolded results with customised bins
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Unfolded results are event-wise EXPERIMENT
(weighted MC events)

«— 1D visualisation of dilepton pt and

leading jet 2-subjettiness(7,) / 1-subjettiness(z,)
Unfolded data versus Sherpa and
MadGraph+Pythia predictions

75, T are unfolded,

but 7,/7, is not directly unfolded
— The unfolding preserves the relation
among variables

+ uncertainties
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Machine-learning for jet calibration and tagging

Measurement of the radius dependence of charged-particle jet
suppression in Pb-Pb collisions at , /sy, = 5.02 TeV (ALICE)

Performance of new jet techniques based on machine-learning
for H - bb and H — cc searches (LHCb)

Simultaneous energy and mass calibration of large-radius jets
with the ATLAS detector using a deep neural work (ATLAS)


https://www.sciencedirect.com/science/article/pii/S0370269323007451
https://cds.cern.ch/record/2882626
https://arxiv.org/pdf/2311.08885

Machine-learning-based jet pr reconstruction under large background

Truth-level jets from %
pp collisions

Detector @ H LT C E
simulation

Detector-level jets

10
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Machine-learning-based jet pr reconstruction under large background

Truth-level jets from
pp collisions

Detector | | embedding H LT C E
simulation

Detector-level jets

Jets under large underlying-
event background

10
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Machine-learning-based jet pr reconstruction under large background

TrUthI'Il_e_Vel jets from D ——— Use a shallow neural network to
pp collisions recover the jet pr truth
Detector [Nl embedding N ALICE

simulation N

s
)
)
Detector-level jets Jets under large underlying-
PbPL m bias event background
data (background)

Training input for the NN: jet and constituent (pr of leading tracks) properties

10
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Probabilit

Machine-learning-based jet pr reconstruction under large background

S L L L L Use a shallow neural network to
recover the jet pr truth

i

<L S ALICE

s

)
Jets under large underlying-
event background

Detector-level jets
PbPb minimum bias

data (background)
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y density

i ALICE Embedded PYTHIA
_ 0-10% Pb—Pb ﬁ 5.02 TeV

0.1— Ch- | i-k;, R=0.4, <05 — c =

0.08 . X,Za‘rfgaf':c}ﬁc - Training input for the NN: jet and constituent (pr of leading tracks) properties
i o=12.4GeV/c |

0-08r Large improvement of jet pr reconstruction w.r.t standard area-base approach!
I narrower dpt — reduced background

0.04
i Improves the measurement of jet-quenching in Pb-Pb collisions

0.021 especially for jets with large radius and low pr
0; Phys. Lett. B 849 (2024) 138412 o
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https://www.sciencedirect.com/science/article/pii/S0370269323007451

Regression technique for Higgs mass reconstruction (H — bb, H — ¢¢) %lg

H — bb and H — cc search is based on a fit to invariant mass — Reco signal GBR

egs . . . . 0.025 I —— Reco signal JEC
— sensitivity relies on precise dijet mass reconstruction —— Tvuth signal
0.020 - JEC: 0=(19.02 + 0.33) GeV
GBR: 0=(11.83 + 0.22) GeV
Jet kinematics and substructures 0.015 - Truth: 0=(6.32 & 0.21) GeV

LHCb Simulation Preliminary

Normalized to Unity

@ Input

Gradient Boosted Regressor (GBR)

o
S
—
O

0.005

I L Fit
T 0.000 —
Dijet invariant mass 50 75 100 125 150 175 200
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The reconstructed mass from GBR has a narrower peak
than that from standard Jet Energy Correction (JEC) tools
— 50% improvement on Higgs mass reconstruction!
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https://cds.cern.ch/record/2882626

b-, c- and light-flavor- jet tagging for  — bb, H — c¢

Standard secondary-vertex-tagging (SVT) relies heavily on secondary vertex (SV) identification
— limited by the SV reconstruction efficiency

The Deep Neural Network (DNN) approach uses jet observables instead

 Inputs: features from individual constituents + jet substructures and global features
« 3 outputs: probabilities to be b-, c- or light jets
— includes more information into tagging

Efficiency

1.0
b-tagging efficiency
0.8 - 27.30%
13.18%
0.6 —
1 1057%
0.4 R
— SVT
0.2 | LHCb Simulation Preliminary
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a8 i
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0.4 ] 53.43%

30.83%
56%
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Higher tagging efficiency is achieved by DNN than SVT !

ﬁlgcb

LHCB-FIGURE-2023-029
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https://cds.cern.ch/record/2882626

Simultaneous energy and mass calibration for large-radius jets

Special deep neural network regression
 Train on jet variables

Jet Energy Response, R.

Aim to calibrate the energy & mass as close as possible to truth

calibrated/truth energy w.r.t. pr
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Efforts to improve the performance

* Encoding of jet position w.r.t. detector

» Special loss to learn the response mode
» Architecture & training designs

ATL

calibrated/truth mass w.r.t. pr
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The DNN calibration is superior to the

Jet Energy Response, R

The calibration to large-radius jets is important for heavy-particle search
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https://arxiv.org/pdf/2311.08885

Summary

Machine-learning (ML) in analysis with jets

— Both based on Multifold, event-wise, multi-dimensional
« ML-based unfolding with event shapes of minimum bias events (CMS)
- Unbinned unfolding and uncertainty estimation with ML-based weighting
- Simultaneous unfolding of multiple variables with full covariance
- ML-based unfolding of 24 kinematic variables of Z+jets (ATLAS)
- Unbinned unfolding results
- Different uncertainty estimation strategy + background treatment
» ML-based data-driven dijet anomaly search is covered by Amandeep’s talk, Dag’s talk

ML techniques for jet calibration and tagging
* ML-based jet calibration
- Jet pr reconstruction under large background of underlying event in PbPb collisions (ALICE)
- Dijet mass reconstruction in H — bb and H — cc search (LHCDb)
- Simultaneous energy and mass calibration in large radius jets (ATLAS)
« ML-based jet tagging
- b and c tagging against light-flavor jets in H — bb and H — cc search (LHCDb)
- More jet tagging results are covered by Andrea’s talk on June 7
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https://indi.to/MwTBq
https://indico.cern.ch/event/1253590/contributions/5836411/attachments/2871236/5026895/AnomalyDetection_Boston_2024_LCHP.pdf
https://indi.to/sQjQR

Backup



Machine-learning-based search

Search for Dijet Resonances with
Anomalous Substructure (CMS)



Machine-learning based data-driven dijet anomaly search

heavy particle A — much lighter daughters B, C — boosted decay products as jets

Be used to distinguish signal & QCD background
— improve the search sensitivity in bump-hunt

Anomalous jet substructure from B, C decay |

But we prefer not to rely on specific models of B & C decay

Let the data tell the anomalies: Anomaly detector trained directly on data
+ Outlier detection (VAE-QR)
« Weak supervision (CWoLa Hunting, TNT, CATHODE) with no MC input

17



Data-driven anomaly detection: Outlier detection
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Jet variables from :
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§ Anomalous score defined as g
differences between the two sets

The Network learned to compress and decompress the QCD background
But doesn’t know how to do this for anomalous jets

— Lower anomalous scores for background

— Higher scores for signal

Cut on the scores for background removal

Data with reduced background
Additional ‘quantile regression’ to decouple the cut with dijet mass for dijet-mass bump-hunt
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Sensitivity improvement by the anomaly detectors

Compact Muon Solenoid

CMS Preliminary 138fb~' (13 TeV)
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No significant excesses from any methods
Test the limits on several benchmark signals with varying jet substructures
 Anomaly detection improves the sensitivity compared to inclusive search
* More generalisable than searches for specific substructure
* First usage of anomalous detection in CMS!
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https://cds.cern.ch/record/2892677

Quark vs gluon and W tagging with advanced techniques

Various classifiers are explored for q/g tagging

+ Particle Flow Network (PFN), Energy Flow Network
(EFN), ParticleNet (P.Net), Particle Transformer
(ParT), Dynamically-enhanced Particle Transformer

(DeParT)
» Reference: Fully Connected (FC), FC reduced
103 L T T R B T T L T "
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Most advance techniques outperform
the reference taggers (except EFN)

ATL-PHYS-PUB-2023-032

The tagger changes the background jet mass

W-tagging with Lund-plan tagger

» Use history of jet shower

ATL

EXPERIMENT
» Graphical Neural Network (GNN) to learn the “graphs” of the jet

— Use Adversarial NN (ANN) to decorrelate mass & tagger

Fraction of jets / 5 GeV

2
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ATL-PHYS-PUB-2023-017

Signal efficiency

* LundNet outperforms the baselines
* mass & tagger decorrelation (ANN)
worsen the performance
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https://cds.cern.ch/record/2878932/files/ATL-PHYS-PUB-2023-032.pdf
https://cds.cern.ch/record/2878932/files/ATL-PHYS-PUB-2023-032.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-017/
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Top tagging with advanced techniques
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Large-scale convolutional neural network for image

classification is tested (
— train directly on 2D “jet images”
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-039/

Systematic uncertainty estimation based on unbinned reweighting

1. MC statistics
Derive the templates by weighting the nominal MC with Poisson(1)
(similar to the treatment of data stat.)

2. Track reconstruction efficiency uncertainty

» Step1: Randomly drop 2.1%(1%) tracks with pT<20 GeV (>20 GeV) in nominal MC*
» Step2: weight the nominal MC to Step1 output at particle- and detector-level

* The uncertainty of track reco. eff. is given by D* analysis: https://cds.cern.ch/record/2810814/
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Systematic uncertainty estimation based on unbinned reweighting

1. MC statistics
Derive the templates by weighting the nominal MC with Poisson(1)
(similar to the treatment of data stat.)

2. Track reconstruction efficiency uncertainty
» Step1: Randomly drop 2.1%(1%) tracks with pT<20 GeV (>20 GeV) in nominal MC*
» Step2: weight the nominal MC to Step1 output at particle- and detector-level

Difference between nominal MC and target

. . After weightin
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0'9;_ 0'9;_ 6
o.sf— N o.sf—

- —4 - —a
0.7 0.7

Example: 065 P o —-

Gen — reco migration 05— o ost —o

of transverse sphericity 0.4F- L, o4 |,
03F- 03

= -4 = -4
0-2:_ 0.2:—

0.12— I6 0,15_ Ie

- 01 02 IIIII0|91 -8 Oo:”"off”b.lz'"b.ls""o.l4""o.ls”"0.|6'"'0.|7””0.|8””0.|9””1 -8

Gen Gen

* The uncertainty of track reco. eff. is given by D* analysis: https://cds.cern.ch/record/2810814/
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Systematic uncertainty estimation based on unbinned reweighting

3. Mismodelling of observables used directly in unfolding
Derive the templates by weighting nominal MC to alternative MC at the particle-level
— ML-based unbinned weighting
— output: weighted nominal MC events
« same particle-level distribution as alternative MC
» keeps the gen. — reco. migration of the nominal MC
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Systematic uncertainty estimation based on unbinned reweighting

3. Mismodelling of observables used directly in unfolding
Derive the templates by weighting nominal MC to alternative MC at the particle-level
— ML-based unbinned weighting
— output: weighted nominal MC events
« same particle-level distribution as alternative MC
» keeps the gen. — reco. migration of the nominal MC
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Systematic uncertainty estimation based on unbinned reweighting

4. Mismodelling of other observables which may change detector response
Derive the templates with two-step weighting
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Systematic uncertainty estimation based on unbinned reweighting

4. Mismodelling of other observables which may change detector response
Derive the templates with two-step weighting

« Step 1: weight the alternative MC to nominal MC at the particle-level
— output: weighted alternative MC
 with migration function of alternative MC
* particle-level distributions of nominal MC
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Systematic uncertainty estimation based on unbinned reweighting

4. Mismodelling of other observables which may change detector response
Derive the templates with two-step weighting

» Step 1: weight the alternative MC to nominal MC at the particle-level
— output: weighted alternative MC
 with migration function of alternative MC
« particle-level distributions of nominal MC

» Step 2: weight the nominal MC to the Step 1 output at particle- and detector-level
— output: weighted nominal MC
 with migration function of alternative MC
* particle-level distributions of nominal MC
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Systematic uncertainty estimation based on unbinned reweighting

4. Mismodelling of other observables which may change detector response
Derive the templates with two-step weighting

« Step 1: weight the alternative MC to nominal MC at the particle-level
— output: weighted alternative MC
 with migration function of alternative MC
* particle-level distributions of nominal MC

» Step 2: weight the nominal MC to the Step 1 output at particle- and detector-level
— output: weighted nominal MC
 with migration function of alternative MC
* particle-level distributions of nominal MC

Before step 2 weighting: After step 2 weighting:
nominal MC - step 1 output weighted result - step 1 output
Example: g og'; A Mig/o(A Mig) (MC vs target Sphericity) : g 09'; A Mig/o(A Mig) (weighted results vs target Sphericity) °
Gen — reco migration ooE ! oo
of spherocity E a E
o.5i,_— —o —_— 0.55_—

0.4 g 0.4

|

OASE -
0.2; —
= ——

0.1

0.3
0.2 —

0.1

|
@ [} -L n
e
& & kb

B = IS (I I WA AU I o A IR I . By =T I (IO I I I I A I I _
o o1 02 03 04 05 06 07 08 09 1 o ol 02 03 04 05 06 07 08 09 1
Gen Gen

24



