

Machine-learning (ML) techniques for hadronic reconstruction and calibration, and machine learning in analyses with jets

Weijie Jin

Machine-learning-based unfolding analysis

Measurement of Event Shapes in NEW Minimum Bias Events at √s = 13 TeV (CMS) <u>CMS-PAS-SMP-23-008</u>

A simultaneous unbinned differential cross NEW section measurement of twenty-four Z+jets kinematic observables with the ATLAS detector arxiv:2405.20041

Machine-learning-based unfolding measurement of event shapes

Event shape observables:

Variables describing the "shapes " of the events

 $\rightarrow\,$ Functions of the momentum of the final state particles

Machine-learning-based unfolding measurement of event shapes

Machine-learning-based unfolding measurement of event shapes

University of Zürich

Weijie Jin

← A typical binary classifier to distinguish two sets

 \leftarrow A typical binary classifier to distinguish two sets

What it actually did: learn the differences in the distributions \rightarrow

← A typical binary classifier to distinguish two sets

What it actually did: learn the differences in the distributions \rightarrow

← We can use the classification scores to weight MC to data, and nominal sample to systematic variations

 \leftarrow A typical binary classifier to distinguish two sets

What it actually did: learn the differences in the distributions \rightarrow

← We can use the classification scores to weight MC to data and nominal sample to systematic variations

Event-wise unfolding \rightarrow the result independent of binning

The actual unfolding in iterations:

- Step 1: weight MC to data, at detector level
- Step 2: pull back the weights to particle(truth) level

 \leftarrow A typical binary classifier to distinguish two sets

What it actually did: learn the differences in the distributions \rightarrow

← We can use the classification scores to weight MC to data and nominal sample to systematic variations

Event-wise unfolding \rightarrow the result independent of binning

The actual unfolding in iterations:

- Step 1: weight MC to data, at detector level
- Step 2: pull back the weights to particle(truth) level

Event-wise uncertainty template \rightarrow unbinned unfolding uncertainty & covariance

University of Zürich

Simultaneously unfold all the variables for ML-based weighting

Add a variable to the unfolding:

Methods based on **binned** histograms: Add **another dimension** in binning

 \rightarrow require higher statistics

 \rightarrow more **computation** in simulation and unfolding

This method:

Add **a feature** in the ML training and evaluation \rightarrow much easier to scale up the dimensions

Simultaneously unfold all the variables for ML-based weighting

Add a variable to the unfolding:

Methods based on **binned** histograms: Add **another dimension** in binning

- Add another dimension in binnin
- → require **higher statistics**

 \rightarrow more **computation** in simulation and unfolding

This method:

Add **a feature** in the ML training and evaluation \rightarrow much easier to scale up the dimensions

Unfolding results as **weighted MC events** ← 2D visualisation of transverse sphericity in charged particle multiplicity slices

Customise binning and variable choices are supported with the event-wise unfolded data

More isotropic data than MC: multi-parton-interaction model? collective effects? instantons? \rightarrow We provide the unfolded results for theoretical interpretation **Simultaneously unfold** all the variables for ML-based weighting

Add a variable to the unfolding:

Methods based on **binned** histograms: Add **another dimension** in binning

 \rightarrow require **higher statistics**

 \rightarrow more **computation** in simulation and unfolding

This method:

Add **a feature** in the ML training and evaluation \rightarrow much easier to scale up the dimensions

Unfolding results as **weighted MC events** ← 2D visualisation of transverse sphericity in charged particle multiplicity slices

Customise binning and variable choices are supported with the event-wise unfolded data

Unbinned uncertainty estimation

ML-based reweighting → Uncertainty templates as sets of weights on nominal MC

- \rightarrow Continuous nuisance parameters can be assigned to the event-weights
- \rightarrow Uncertainty covariance can be estimated from toy experiments
 - Unfold with "bootstraps" of MC with variations of nuisance parameters → Syst. Unc + Covariance
 - Unfold with "bootstraps" of resampled data \rightarrow Stat. Unc. + Covariance

Unbinned uncertainty estimation

ML-based reweighting \rightarrow Uncertainty templates as sets of weights on nominal MC

- \rightarrow Continuous nuisance parameters can be assigned to the event-weights
- \rightarrow Uncertainty covariance can be estimated from toy experiments
 - Unfold with "bootstraps" of MC with variations of nuisance parameters \rightarrow Syst. Unc + Covariance
 - Unfold with "bootstraps" of resampled data \rightarrow Stat. Unc. + Covariance

CMS

Example: correlation of the syst. unc. of sphericity

The way to improve the usability of unfolded results

- Publish the unbinned results on event-level
- Publish the **weight sets** from **toy experiments**
 - \rightarrow Unc. + Covariance

University of Zürich

Weijie Jin

Machine-learning-based unfolding of Z+jet kinematic observables

Observables to be measured

- Kinematics of the **di-muon system from Z decay** $p_T^{\mu\mu}$, $y_{\mu\mu}$
 - \rightarrow probe **Z boson production** kinematics
- Kinematics of the **two muons**

 $p_T^{\mu 1}, p_T^{\mu 2}, \eta_{\mu 1}, \eta_{\mu 2}, \phi_{\mu 1}, \phi_{\mu 2}$

- \rightarrow probe Z boson decay kinematics
- Kinematics of **two leading charged particle jets** p_T^{j1} , p_T^{j2} , y_{j1} , y_{j2} , ϕ_{j1} , ϕ_{j2}
- **Substructure** of the two leading charged particle jets mass: (m_{j1}, m_{j2}) , charged particle multiplicity: $(n_{ch}^{j1}, n_{ch}^{j2})$, N-subjettiness: $\tau_1^{j1}, \tau_1^{j2}, \tau_2^{j1}, \tau_2^{j2}, \tau_3^{j1}, \tau_3^{j2}$

Also unfolded with Multifold* -----> Sin

Simultaneous unfolding of 24 variables

* <u>https://arxiv.org/abs/1911.09107</u>, <u>https://arxiv.org/abs/2105.04448</u>

arxiv:2405.20041

Unfolded results are **event-wise EXPERIMENT** (weighted MC events)

← 1D visualisation of dilepton p_T and leading jet 2-subjettiness(τ_2) / 1-subjettiness(τ_1) Unfolded data versus Sherpa and MadGraph+Pythia predictions

arxiv:2405.20041

Unfolded results are **event-wise EXPERIMENT** (weighted MC events)

← 1D visualisation of dilepton p_T and leading jet 2-subjettiness(τ_2) / 1-subjettiness(τ_1) Unfolded data versus Sherpa and MadGraph+Pythia predictions

 τ_2 , τ_1 are unfolded, but τ_2/τ_1 is not directly unfolded \rightarrow The unfolding preserves the relation among variables

Unfolded results are **event-wise EXPERIMENT** (weighted MC events)

← 1D visualisation of **dilepton** p_T and leading jet 2-subjettiness(τ_2) / 1-subjettiness(τ_1) Unfolded data versus Sherpa and MadGraph+Pythia predictions

 τ_2 , τ_1 are unfolded, but τ_2/τ_1 is not directly unfolded \rightarrow The unfolding preserves the relation among variables

+ uncertainties

Unfolded results with customised bins

arxiv:2405.20041

Event-level unbinned unfolding results

(weighted nominal MC)

Perturbations on the input samples according to uncertainties

- → Unfold with these alternative samples
- \rightarrow Unfolding **uncertainty** as **alternative weights**

Machine-learning for jet calibration and tagging

Measurement of the radius dependence of charged-particle jet suppression in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV (ALICE) <u>Phys. Lett. B 849 (2024) 138412</u>

Performance of new jet techniques based on machine-learning for $H \rightarrow b\bar{b}$ and $H \rightarrow c\bar{c}$ searches (LHCb) LHCB-FIGURE-2023-029

Simultaneous energy and mass calibration of large-radius jets with the ATLAS detector using a deep neural work (ATLAS) arxiv:2311.08885

Training input for the NN: jet and constituent (pT of leading tracks) properties

Regression technique for Higgs mass reconstruction ($H \rightarrow b\bar{b}$, $H \rightarrow c\bar{c}$)

 $H \rightarrow b\bar{b}$ and $H \rightarrow c\bar{c}$ search is based on a fit to invariant mass \rightarrow sensitivity relies on precise dijet mass reconstruction

The **reconstructed mass** from **GBR** has a **narrower peak** than that from **standard Jet Energy Correction** (JEC) tools \rightarrow 50% improvement on Higgs mass reconstruction!

b-, c- and light-flavor- jet tagging for $H \rightarrow b\bar{b}, H \rightarrow c\bar{c}$

Standard secondary-vertex-tagging (SVT) relies heavily on secondary vertex (SV) identification \rightarrow limited by the SV reconstruction efficiency

The Deep Neural Network (DNN) approach uses jet observables instead

- Inputs: features from individual constituents + jet substructures and global features
- 3 outputs: probabilities to be b-, c- or light jets

 \rightarrow includes more information into tagging

Higher tagging efficiency is achieved by DNN than SVT !

University of Zürich

Simultaneous energy and mass calibration for large-radius jets

Special deep neural network regression

- Train on jet variables
- Aim to calibrate the energy & mass as close as possible to truth

- Encoding of jet position w.r.t. detector
- Special loss to learn the response mode
- Architecture & training designs

The DNN calibration is superior to the standard calibration

The calibration to large-radius jets is important for heavy-particle search

Summary

Machine-learning (ML) in analysis with jets

\rightarrow Both based on Multifold, event-wise, multi-dimensional

- ML-based unfolding with event shapes of minimum bias events (CMS)
 - Unbinned unfolding and uncertainty estimation with ML-based weighting
 - Simultaneous unfolding of multiple variables with full covariance
- ML-based unfolding of 24 kinematic variables of Z+jets (ATLAS)
 - Unbinned unfolding results
 - Different uncertainty estimation strategy + background treatment
- ML-based data-driven dijet anomaly search is covered by Amandeep's talk, Dag's talk

ML techniques for jet calibration and tagging

- ML-based jet calibration
 - Jet p_T reconstruction under large background of underlying event in PbPb collisions (ALICE)
 - Dijet mass reconstruction in $H \rightarrow b\bar{b}$ and $H \rightarrow c\bar{c}$ search (LHCb)
 - Simultaneous energy and mass calibration in large radius jets (ATLAS)
- ML-based jet tagging
 - **b** and **c** tagging against light-flavor jets in $H \rightarrow b\bar{b}$ and $H \rightarrow c\bar{c}$ search (LHCb)
 - More jet tagging results are covered by <u>Andrea's talk on June 7</u>

Machine-learning-based search

Search for Dijet Resonances with Anomalous Substructure (CMS)

Machine-learning based data-driven dijet anomaly search

heavy particle $A \rightarrow$ much lighter daughters $B, C \rightarrow$ boosted decay products as jets

Anomalous jet substructure from B, C decay

Be used to distinguish signal & QCD background \rightarrow improve the search sensitivity in bump-hunt

But we prefer not to rely on specific models of B & C decay

Let the data tell the anomalies: Anomaly detector trained directly on data

- Outlier detection (VAE-QR)
- Weak supervision (CWoLa Hunting, TNT, CATHODE)
- Multi-signal priors

Train on background and mixture of signals

Entirely data-driven with no MC input

Data-driven anomaly detection: Outlier detection

Variational autoencoder (VAE)

The Network learned to **compress and decompress** the QCD **background** But doesn't know how to do this for **anomalous** jets

- \rightarrow Lower anomalous scores for background
- \rightarrow Higher scores for signal

Cut on the scores for background removal Additional 'quantile regression' to **decouple** the **cut** with **dijet mass** Data with **reduced background** for dijet-mass **bump-hunt**

Sensitivity improvement by the anomaly detectors

No significant excesses from any methods

Data - Fit

Test the limits on **several benchmark signals** with varying jet substructures

- Anomaly detection improves the sensitivity compared to inclusive search
- More generalisable than searches for specific substructure
- First usage of anomalous detection in CMS!

Quark vs gluon and W tagging with advanced techniques

10²

10⁻¹

 10^{-2}

 10^{-3}

10⁻⁴

 10^{-5}

Fraction of jets / 5 GeV

Various classifiers are explored for q/g tagging

- Particle Flow Network (PFN), Energy Flow Network (EFN), ParticleNet (P.Net), Particle Transformer (ParT), Dynamically-enhanced Particle Transformer (DeParT)
- Reference: Fully Connected (FC), FC reduced

Most advance techniques outperform the reference taggers (except EFN)

ATL-PHYS-PUB-2023-032

W-tagging with Lund-plan tagger

- Use history of jet shower
- Graphical Neural Network (GNN) to learn the "graphs" of the jet

The tagger **changes the background jet mass**

ATL-PHYS-PUB-2023-017

 \rightarrow Use Adversarial NN (ANN) to decorrelate mass & tagger

- LundNet outperforms the baselines
- mass & tagger decorrelation (ANN) worsen the performance

Top tagging with advanced techniques

Large-scale convolutional neural network for **image** classification is tested (ResNet50)

ParticleNet, PFN, DNN surpass the ResNet50 performance

1. MC statistics

Derive the templates by **weighting** the **nominal MC** with **Poisson(1)** (similar to the treatment of data stat.)

2. Track reconstruction efficiency uncertainty

- Step1: Randomly drop 2.1%(1%) tracks with pT<20 GeV (>20 GeV) in nominal MC*
- Step2: weight the nominal MC to Step1 output at particle- and detector-level

* The uncertainty of track reco. eff. is given by D* analysis: <u>https://cds.cern.ch/record/2810814/</u> University of Zürich Weijie Jin

1. MC statistics

Derive the templates by **weighting** the **nominal MC** with **Poisson(1)** (similar to the treatment of data stat.)

2. Track reconstruction efficiency uncertainty

- Step1: Randomly drop 2.1%(1%) tracks with pT<20 GeV (>20 GeV) in nominal MC*
- Step2: weight the nominal MC to Step1 output at particle- and detector-level

* The uncertainty of track reco. eff. is given by D* analysis: https://cds.cern.ch/record/2810814/

University of Zürich

Weijie Jin

3. Mismodelling of observables used directly in unfolding

Derive the templates by **weighting nominal MC** to **alternative MC** at the **particle-level**

- \rightarrow **ML-based** unbinned weighting
- \rightarrow output: weighted nominal MC events
 - same particle-level distribution as alternative MC
 - keeps the gen. \rightarrow reco. migration of the nominal MC

3. Mismodelling of observables used directly in unfolding

Derive the templates by weighting nominal MC to alternative MC at the particle-level

- \rightarrow **ML-based** unbinned weighting
- \rightarrow output: weighted nominal MC events
 - same particle-level distribution as alternative MC
 - keeps the gen. \rightarrow reco. migration of the nominal MC

4. **Mismodelling of other observables which may change detector response** Derive the templates with two-step weighting

4. Mismodelling of other observables which may change detector response

Derive the templates with two-step weighting

- Step 1: weight the alternative MC to nominal MC at the particle-level
 - \rightarrow output: weighted alternative MC
 - with migration function of alternative MC
 - particle-level distributions of nominal MC

4. Mismodelling of other observables which may change detector response

Derive the templates with two-step weighting

- Step 1: weight the alternative MC to nominal MC at the particle-level
 - \rightarrow output: weighted alternative MC
 - with migration function of alternative MC
 - particle-level distributions of nominal MC
- Step 2: weight the nominal MC to the Step 1 output at particle- and detector-level
 - \rightarrow output: weighted nominal MC
 - with migration function of alternative MC
 - particle-level distributions of nominal MC

4. Mismodelling of other observables which may change detector response

Derive the templates with two-step weighting

- Step 1: weight the alternative MC to nominal MC at the particle-level
 - → output: weighted alternative MC
 - with migration function of alternative MC
 - particle-level distributions of nominal MC
- Step 2: weight the nominal MC to the Step 1 output at particle- and detector-level
 - \rightarrow output: weighted nominal MC
 - with migration function of alternative MC
 - particle-level distributions of nominal MC

Example: Gen \rightarrow reco migration of spherocity

University of Zürich