Prottoy Das

for the

ALICE, ATLAS, CMS and LHCb collaborations

□ Jets: collimated showers of particles produced from the fragmentation and hadronisation of hard-scattered partons in high-energy collisions

□ Jets: collimated showers of particles produced from the fragmentation and hadronisation of hard-scattered partons in high-energy collisions

Jet fragmentation functions

□ Jets: collimated showers of particles produced from the fragmentation and hadronisation of hard-scattered partons in high-energy collisions

Jet fragmentation functions

Carry the information of details of parton showering and hadronisation processes

□ Jets: collimated showers of particles produced from the fragmentation and hadronisation of hard-scattered partons in high-energy collisions

Jet fragmentation functions

- Carry the information of details of parton showering and hadronisation processes
- Are useful to test both the perturbative and non-perturbative aspects of quantum chromodynaymics (QCD)

□ Jets: collimated showers of particles produced from the fragmentation and hadronisation of hard-scattered partons in high-energy collisions

Jet fragmentation functions

- Carry the information of details of parton showering and hadronisation processes
- Are useful to test both the perturbative and non-perturbative aspects of quantum chromodynaymics (QCD)
- Are important observables to study the jet-medium interaction in presence of quark-gluon plasma (QGP)

□ Jets: collimated showers of particles produced from the fragmentation and hadronisation of hard-scattered partons in high-energy collisions

Jet fragmentation functions

- Carry the information of details of parton showering and hadronisation processes
- Are useful to test both the perturbative and non-perturbative aspects of quantum chromodynaymics (QCD)
- Are important observables to study the jet-medium interaction in presence of quark-gluon plasma (QGP)

Among many jet fragmentation variables, we will focus on:

□ Jets: collimated showers of particles produced from the fragmentation and hadronisation of hard-scattered partons in high-energy collisions

Jet fragmentation functions

- Carry the information of details of parton showering and hadronisation processes
- Are useful to test both the perturbative and non-perturbative aspects of quantum chromodynaymics (QCD)
- Are important observables to study the jet-medium interaction in presence of quark-gluon plasma (QGP)

Among many jet fragmentation variables, we will focus on: $z = \frac{p_{jet} \cdot p_{ch}}{|p_{jet}|^2}$ Or, $z = \frac{p_{T, \text{ particle}}}{p_{T, \text{ jet}}}$ $\xi = \ln\left(\frac{1}{z}\right)$

ATLAS, Eur. Phys. J. C 71 (2011) 1795

Prottoy Das for ALICE, ATLAS, CMS & LHCb

□ Jets: collimated showers of particles produced from the fragmentation and hadronisation of hard-scattered partons in high-energy collisions

Jet fragmentation functions

- > Carry the information of details of **parton showering** and **hadronisation** processes
- Are useful to test both the perturbative and non-perturbative aspects of quantum chromodynaymics (QCD)
- Are important observables to study the jet-medium interaction in presence of quark-gluon plasma (QGP)

Among many jet fragmentation variables, we will focus on:

□ Jets: collimated showers of particles produced from the fragmentation and hadronisation of hard-scattered partons in high-energy collisions

Jet fragmentation functions

- Carry the information of details of parton showering and hadronisation processes
- Are useful to test both the perturbative and non-perturbative aspects of quantum chromodynaymics (QCD)
- Are important observables to study the jet-medium interaction in presence of quark-gluon plasma (QGP)

Among many jet fragmentation variables, we will focus on:

$$z = \frac{p_{jet} \cdot p_{ch}}{|p_{jet}|^2}$$

Or, $z = \frac{p_{T, particle}}{p_{T, jet}}$
 $\xi = \ln\left(\frac{1}{z}\right)$

Hadronchemistry in jets

Prottoy Das for ALICE, ATLAS, CMS & LHCb

□ Jets: collimated showers of particles produced from the fragmentation and hadronisation of hard-scattered partons in high-energy collisions

Jet fragmentation functions

- Carry the information of details of parton showering and hadronisation processes
- Are useful to test both the perturbative and non-perturbative aspects of quantum chromodynaymics (QCD)
- Are important observables to study the jet-medium interaction in presence of quark-gluon plasma (QGP)

Among many jet fragmentation variables, we will focus on:

$$z = \frac{p_{jet} \cdot p_{ch}}{|p_{jet}|^2}$$

Or, $z = \frac{p_{T, \text{ particle}}}{p_{T, \text{ jet}}}$
 $\xi = \ln\left(\frac{1}{z}\right)$

Hadronchemistry in jets

Helps illuminate the QCD mechanisms in fragmentation

□ Jets: collimated showers of particles produced from the fragmentation and hadronisation of hard-scattered partons in high-energy collisions

Jet fragmentation functions

- Carry the information of details of parton showering and hadronisation processes
- Are useful to test both the perturbative and non-perturbative aspects of quantum chromodynaymics (QCD)
- Are important observables to study the jet-medium interaction in presence of quark-gluon plasma (QGP)

Among many jet fragmentation variables, we will focus on:

$$z = \frac{p_{jet} \cdot p_{ch}}{|p_{jet}|^2}$$

Or, $z = \frac{p_{T, particle}}{p_{T, jet}}$
 $\xi = \ln\left(\frac{1}{z}\right)$

Hadronchemistry in jets

- Helps illuminate the QCD mechanisms in fragmentation
- Elucidates the contributions from hard processes in comparison to inclusive measurements

□ Jets: collimated showers of particles produced from the fragmentation and hadronisation of hard-scattered partons in high-energy collisions

Jet fragmentation functions

- Carry the information of details of parton showering and hadronisation processes
- Are useful to test both the perturbative and non-perturbative aspects of quantum chromodynaymics (QCD)
- Are important observables to study the jet-medium interaction in presence of quark-gluon plasma (QGP)

Hard scattering bard scatterin

Among many jet fragmentation variables, we will focus on:

$$z = \frac{p_{jet} \cdot p_{ch}}{|p_{jet}|^2}$$

Or, $z = \frac{p_{T, \text{ particle}}}{p_{T, \text{ jet}}}$
 $\xi = \ln\left(\frac{1}{z}\right)$

Hadronchemistry in jets

- Helps illuminate the QCD mechanisms in fragmentation
- Elucidates the contributions from hard processes in comparison to inclusive measurements
- Serves as a characteristic of jet quenching

Jet fragmentation

ALICE, Phys. Rev. D 91 (2015) 112012

ALICE, Phys. Rev. D 91 (2015) 112012

Scaling of jet fragmentation with jet p_{T} holds for $p_{T} > 20 \text{ GeV/}c$ (except at low z^{ch})

for $p_{\rm T} > 20$ GeV/*c* (except at low *z*^{ch})

Probability of jet constituents having a given fraction of jet p_{T} is independent of total jet p_{T}

- > Scaling breaks down for jet $p_T < 20 \text{ GeV}/c$
- > As jet p_{T} increases, onset of scaling behavior observed

ALICE, arXiv: 2311.13322

> Similar observation as pp 7 TeV for jet radius R = 0.4 (scaling for $p_T > 20 \text{ GeV}/c$)

Similar observation as pp 7 TeV for jet radius R = 0.4 (scaling for p_T > 20 GeV/c)
Scaling breaks for lower jet R (0.2, 0.3)

Similar observation as pp 7 TeV for jet radius R = 0.4 (scaling for p_T > 20 GeV/c)
Scaling breaks for lower jet R (0.2, 0.3)

Scaling behavior depends on jet radius and jet momentum

Jet fragmentation: ξ

ALICE, arXiv: 2311.13322

 \Box ξ distribution highlights the low-*z* region

Jet fragmentation: ξ

ALICE, arXiv: 2311.13322

- \Box ξ distribution highlights the low-*z* region
- Hump-back plateau structure observed

Jet fragmentation: ξ

ALICE, arXiv: 2311.13322

- $\Box \xi$ distribution highlights the low-z region
- Hump-back plateau structure observed

Suppression of low momentum particle production due to QCD coherence

Enhancement of Λ_c^+/D^0 yield ratio observed in pp collisions compared to e^+e^- collisions [1,2]

More on charm fragmentation from V. Feuillard, June 5, 2:18 PM

Prottoy Das for ALICE, ATLAS, CMS & LHCb

Enhancement of Λ_c^+/D^0 yield ratio observed in pp collisions compared to e^+e^- collisions [1,2] Questions universality of fragmentation functions across different collision systems

More on charm fragmentation from V. Feuillard, June 5, 2:18 PM

Prottoy Das for ALICE, ATLAS, CMS & LHCb

Enhancement of Λ_c^+/D^0 yield ratio observed in pp collisions compared to e^+e^- collisions [1,2] Questions universality of fragmentation functions across different collision systems

Additional info on heavy-quark (charm) fragmentation required

More on charm fragmentation from V. Feuillard, June 5, 2:18 PM

Prottoy Das for ALICE, ATLAS, CMS & LHCb

Enhancement of Λ_c^+/D^0 yield ratio observed in pp collisions compared to e^+e^- collisions [1,2] Questions universality of fragmentation functions across different collision systems

Additional info on heavy-quark (charm) fragmentation required

More on charm fragmentation from V. Feuillard, June 5, 2:18 PM

Prottoy Das for ALICE, ATLAS, CMS & LHCb

Enhancement of Λ_c^+/D^0 yield ratio Questions universality of Additional info on heavy-quark (charm) observed in pp collisions compared to fragmentation functions across fragmentation required e⁺e⁻ collisions [1,2] different collision systems $\hat{\sigma}$ $(1/N_{jet}) dN/dz_{\parallel}^{c}$ 5 — **ALICE**, pp, √*s* = 13 TeV ALICE, Phys. Rev. D 109 (2024) 072005 \circ Λ_c^+ -tagged jets $4.5 \stackrel{\text{E}}{=}$ charged jets, anti- k_{T} , R = 0.4D⁰-tagged jets $7 \le p_{T}^{\text{jet ch}} < 15 \text{ GeV}/c, |\eta_{\text{int}}| \le 0.5$ $.5 = 3 \le p_{\tau}^{h} < 15 \text{ GeV}/c, |y^{h}| \le 0.8$ ALICE 2.51.5 D^0 $\Lambda_c^+\!/D^0$ /THIA 8 Monash THIA 8 CR-BLC Mode 2 2 1.5 0.5 0.4 0.5 0.6 0.7 0.8 0.9 Z_{II}^{ch} ALI-PUB-569701 $p_{\rm ch}$ jet $\cdot p_{\rm H_0}$ More on charm fragmentation $p_{\rm ch}$ jet $p_{\rm ch}$ jet from V. Feuillard, June 5, 2:18 PM

Prottoy Das for ALICE, ATLAS, CMS & LHCb

Enhancement of Λ_c^+/D^0 yield ratio observed in pp collisions compared to e^+e^- collisions [1,2]

Questions universality of fragmentation functions across different collision systems

Additional info on heavy-quark (charm) fragmentation required

 σ $(1/N_{jet}) dN/dZ_{\parallel}^{c}$ 5 – ALICE, pp, \sqrt{s} = 13 TeV \circ Λ_c^+ -tagged jets 4.5 $\stackrel{E}{=}$ charged jets, anti- k_{T} , R = 0.4D⁰-tagged jets $7 \le p_{\tau}^{\text{jet ch}} < 15 \text{ GeV}/c, |\eta_{\text{int}}| \le 0.5$ $.5 = 3 \le p_{-}^{h} < 15 \text{ GeV}/c, |y^{h}| \le 0.8$ ALICE 1.5 D^0 $\Lambda_{c}^{+}\!/D^{0}$ 'THIA 8 Monash THIA 8 CR-BLC Mode 2 1.5 0.5 0.4 0.5 0.6 0.7 0.8 0.9 Z_{II}^{ch} ALI-PUB-569701

More on charm fragmentation from V. Feuillard, June 5, 2:18 PM

Prottoy Das for ALICE, ATLAS, CMS & LHCb

 $z_{||}^{\rm ch} = \frac{\vec{p}_{\rm ch jet} \cdot \vec{p}_{\rm H_Q}}{\vec{p}_{\rm ch jet} \cdot \vec{p}_{\rm ch jet}}$

ALICE, Phys. Rev. D 109 (2024) 072005

> Hints of softer fragmentation of charm quarks into Λ_c^+ baryons compared to D⁰ mesons in the measured kinematic interval

Enhancement of Λ_c^+/D^0 yield ratio observed in pp collisions compared to e^+e^- collisions [1,2]

Questions universality of fragmentation functions across different collision systems

ALICE, Phys. Rev. D 109 (2024) 072005

Charm-baryon

measured kinematic interval

Additional info on heavy-quark (charm) fragmentation required

favored

Hints of softer fragmentation of charm quarks into

 Λ_c^+ baryons compared to D⁰ mesons in the

production

presence of higher particle multiplicity??

More on charm fragmentation from V. Feuillard, June 5, 2:18 PM

Prottoy Das for ALICE, ATLAS, CMS & LHCb

 $z_{||}^{\rm ch} = \frac{\vec{p}_{\rm ch jet} \cdot \vec{p}_{\rm H_Q}}{\vec{p}_{\rm ch jet} \cdot \vec{p}_{\rm ch jet}}$

[1] ALICE, Phys. Rev. Lett. 128 (2022) 012001 [2] ALICE, JHEP 12 (2023) 086

in

Enhancement of Λ_c^+/D^0 yield ratio observed in pp collisions compared to e⁺e⁻ collisions [1,2]

Questions universality of fragmentation functions across different collision systems

Additional info on heavy-quark (charm) fragmentation required

favored

Prottoy Das for ALICE, ATLAS, CMS & LHCb

[1] ALICE, Phys. Rev. Lett. 128 (2022) 012001 [2] ALICE, JHEP 12 (2023) 086

in

Fragmentation of jets containing prompt J/ψ

 J/ψ meson production in pp collisions occurs at the transition between perturbative and non-perturbative regimes of QCD

Fragmentation of jets containing prompt J/ψ

 J/ψ meson production in pp collisions occurs at the transition between perturbative and non-perturbative regimes of QCD Models are not able to simultaneously describe polarization and p_{T} -differential cross section of quarkonia

Fragmentation of jets containing prompt J/ ψ

 J/ψ meson production in pp collisions occurs at the transition between perturbative and non-perturbative regimes of QCD Models are not able to simultaneously describe polarization and p_{T} -differential cross section of quarkonia

Measuring prompt J/ψ production associated with jets can contribute to better modelling

Prompt J/ ψ mesons populate lower values of z compared to PYTHIA 8 predictions

Electroweak bosons, e.g., Z bosons produced in conjunction with jets in high-energy experiments is one of the principle final-state channels that can be used to test the accuracy of pQCD calculations

Electroweak bosons, e.g., Z bosons produced in conjunction with jets in high-energy experiments is one of the principle final-state channels that can be used to test the accuracy of pQCD calculations

Electroweak bosons, e.g., Z bosons produced in conjunction with jets in high-energy experiments is one of the principle final-state channels that can be used to test the accuracy of pQCD calculations

> Hump-backed structure for z < 0.04 due to both color coherence and kinematic requirements

Prottoy Das for ALICE, ATLAS, CMS & LHCb

More on jet fragmentation of *Z*-tagged jets from T. Martin, June 7, 2:00 PM

Electroweak bosons, e.g., Z bosons produced in conjunction with jets in high-energy experiments is one of the principle final-state channels that can be used to test the accuracy of pQCD calculations

> Hump-backed structure for z < 0.04 due to both color coherence and kinematic requirements

> Scaling behavior observed at 0.04 < z < 0.4

Electroweak bosons, e.g., Z bosons produced in conjunction with jets in high-energy experiments is one of the principle final-state channels that can be used to test the accuracy of pQCD calculations

- > Hump-backed structure for z < 0.04 due to both color coherence and kinematic requirements
- > Scaling behavior observed at 0.04 < z < 0.4
- > Charged hadron production inside jets slightly shifted toward lower z at higher collision energy

More on jet quenching in presence of QGP from A. Takacs, June 3, 2:00 PM; P. Jacob, June 3, 2:54 PM; Y. Go, June 3, 3:12 PM; R. Ehlers, June 6, 10:00 AM and many more colleagues at LHCP2024

More on jet quenching in presence of QGP from A. Takacs, June 3, 2:00 PM; P. Jacob, June 3, 2:54 PM; Y. Go, June 3, 3:12 PM; R. Ehlers, June 6, 10:00 AM and many more colleagues at LHCP2024

Jet fragmentation function gets modified in presence of QGP medium in heavy-ion collisions compared to vacuum scenario

Ratio of jet fragmentation distributions [D(z)] between heavy-ion and pp collisions gives the magnitude of modification

$$R_{D(z)} = \frac{D(z)_{AA-cent}}{D(z)_{pp}}$$

More on jet quenching in presence of QGP from A. Takacs, June 3, 2:00 PM; P. Jacob, June 3, 2:54 PM; Y. Go, June 3, 3:12 PM; R. Ehlers, June 6, 10:00 AM and many more colleagues at LHCP2024

ATLAS, Phys. Rev. C 98, 024908 (2018)

Modification of z distribution in heavy-ion collisions compared to pp collisions

ATLAS, Phys. Rev. C 98, 024908 (2018)

- Modification of z distribution in heavy-ion collisions compared to pp collisions
- Enhancement of low- and high-z particles, suppression at intermediate z

ATLAS, Phys. Rev. C 98, 024908 (2018)

- Modification of z distribution in heavy-ion collisions compared to pp collisions
- Enhancement of low- and high-z particles, suppression at intermediate z
- Transition from enhancement to suppression for soft fragments occurs at lower z for larger jet p_T

System	Jet p _T	Low z	Intermediate z	High z
Central Pb-Pb	> 126 GeV/ <i>c</i>	Enhancement	Supression	Enhancement
НМ рр	10-20 GeV/ <i>c</i>	Enhancement	Supression	Suppression

Prottoy Das for ALICE, ATLAS, CMS & LHCb

More on jet quenching in small collision systems from F. Krizek, June 5, 11:36 AM

Prottoy Das for ALICE, ATLAS, CMS & LHCb

More on jet quenching in small collision systems from F. Krizek, June 5, 11:36 AM

Prottoy Das for ALICE, ATLAS, CMS & LHCb

More on jet quenching in small collision system from F. Krizek, June 5, 11:36 AM

 \Box γ -tagged jets are more likely to be initiated by a light quark, whereas inclusive jets are mostly initiated by gluons

Comparing jet modification between them provides insights into parton color-charge dependence of energy loss

 \Box γ -tagged jets are more likely to be initiated by a light quark, whereas inclusive jets are mostly initiated by gluons

Comparing jet modification between them provides insights into parton color-charge dependence of energy loss

 \Box γ -tagged jets are more likely to be initiated by a light quark, whereas inclusive jets are mostly initiated by gluons

Comparing jet modification between them provides insights into parton color-charge dependence of energy loss

□ In peripheral collisions,

> Modification shape is quantitatively similar for inclusive and γ -tagged jets

 \Box γ -tagged jets are more likely to be initiated by a light quark, whereas inclusive jets are mostly initiated by gluons

Comparing jet modification between them provides insights into parton color-charge dependence of energy loss

□ In peripheral collisions,

- > Modification shape is quantitatively similar for inclusive and γ -tagged jets
- □ In central collisions,
 - $\succ \gamma$ -tagged jets show an additional relative suppression at high z and a counterbalancing enhancement at low z
 - > Minimum value of the ratio for γ -tagged jets is shifted to larger z

 \Box γ -tagged jets are more likely to be initiated by a light quark, whereas inclusive jets are mostly initiated by gluons

Comparing jet modification between them provides insights into parton color-charge dependence of energy loss

□ In peripheral collisions,

- > Modification shape is quantitatively similar for inclusive and γ -tagged jets
- □ In central collisions,
 - $\succ \gamma$ -tagged jets show an additional relative suppression at high z and a counterbalancing enhancement at low z
 - > Minimum value of the ratio for γ -tagged jets is shifted to larger z

In central collisions, γ -tagged jets are modified in a different way than inclusive jets

CMS, Phys. Lett. B 825 (2021) 136842

 \succ

- \blacktriangleright Rising trend of nuclear modification factor as a function of z
- Suppression at low *z* is the largest for most central Pb-Pb collisions

 ${\rm J}/\psi$ produced with a large degree of surrounding activity are more highly suppressed

CMS, Phys. Lett. B 825 (2021) 136842

- \blacktriangleright Rising trend of nuclear modification factor as a function of z
- Suppression at low *z* is the largest for most central Pb-Pb collisions

 J/ψ produced with a large degree of surrounding activity are more highly suppressed

Highlights the importance of incorporating jet quenching mechanism in models of ${\rm J}/\psi$ suppression

CMS, Phys. Lett. B 825 (2021) 136842

Jet hadronchemistry

Strange hadronchemistry in and out of jets

Strange hadronchemistry in and out of jets

Strange baryon-to-meson ratios:

For UE and inclusive, consistent with each other within uncertainties

Strange hadronchemistry in and out of jets

Strange baryon-to-meson ratios:

- For UE and inclusive, consistent with each other within uncertainties
- For UE and inclusive, show larger enhancement in the p_T region 1-5 GeV/c w.r.t. those for jet constituents

Strange baryon-to-meson ratios:

- For UE and inclusive, consistent with each other within uncertainties
- For UE and inclusive, show larger enhancement in the p_T region 1-5 GeV/c w.r.t. those for jet constituents
- For jet, approximately independent of p_T beyond 2 GeV/c

Strange baryon-to-meson ratios:

- For UE and inclusive, consistent with each other within uncertainties
- For UE and inclusive, show larger enhancement in the p_T region 1-5 GeV/c w.r.t. those for jet constituents
- For jet, approximately independent of p_T beyond 2 GeV/c

Strange baryon-to-baryon ratios:

Strange baryon-to-meson ratios:

- For UE and inclusive, consistent with each other within uncertainties
- For UE and inclusive, show larger enhancement in the p_T region 1-5 GeV/c w.r.t. those for jet constituents
- For jet, approximately independent of p_T beyond 2 GeV/c

Strange baryon-to-baryon ratios:

For UE, consistent with that of inclusive particles within uncertainties

Strange baryon-to-meson ratios:

- For UE and inclusive, consistent with each other within uncertainties
- > For UE and inclusive, show larger enhancement in the p_T region 1-5 GeV/c w.r.t. those for jet constituents
- For jet, approximately independent of p_T beyond 2 GeV/c

Strange baryon-to-baryon ratios:

For UE, consistent with that of inclusive particles within uncertainties

Strange baryon-to-meson and baryon-to baryon ratios suppressed by a factor \sim 2 in jets w.r.t inclusive and UE measurements

Strange baryon-to-meson ratios:

- For UE and inclusive, consistent with each other within uncertainties
- > For UE and inclusive, show larger enhancement in the p_T region 1-5 GeV/c w.r.t. those for jet constituents
- For jet, approximately independent of p_T beyond 2 GeV/c

Strange baryon-to-baryon ratios:

For UE, consistent with that of inclusive particles within uncertainties

Strange baryon-to-meson and baryon-to baryon ratios suppressed by a factor \sim 2 in jets w.r.t inclusive and UE measurements

Similar trends observed in different multiplicity classes of p-Pb collisions at 5.02 TeV

Hadrons with heavier mass require a larger z threshold for their formation, leading to the position of the maximum at a higher z

- Hadrons with heavier mass require a larger z threshold for their formation, leading to the position of the maximum at a higher z
- \succ For lowest jet p_T interval, proton production relative to kaon production is clearly suppressed for lower z values

- Hadrons with heavier mass require a larger z threshold for their formation, leading to the position of the maximum at a higher z
- For lowest jet p_T interval, proton production relative to kaon production is clearly suppressed for lower z values

Related to quark-flavor content inside the proton??

Prottoy Das for ALICE, ATLAS, CMS & LHCb

More on jet hadronchemistry of Z-tagged jets from T. Martin, June 7, 2:00 PM

81

A tiny fraction of available results are discussed. What have we learned?

A tiny fraction of available results are discussed. What have we learned?

Measurements of jet fragmentation for different species of jets in pp collisions provide a powerful test of the available theoretical models

- A tiny fraction of available results are discussed. What have we learned?
 - Measurements of jet fragmentation for different species of jets in pp collisions provide a powerful test of the available theoretical models
 - Studying modification of jet fragmentation from small to large collision systems offers excellent opportunities to improve our understanding of collision dynamics in QCD

- A tiny fraction of available results are discussed. What have we learned?
 - Measurements of jet fragmentation for different species of jets in pp collisions provide a powerful test of the available theoretical models
 - Studying modification of jet fragmentation from small to large collision systems offers excellent opportunities to improve our understanding of collision dynamics in QCD
 - Measurements of particle species in high particle-density environment (e.g., in jets) put important constraints on both perturbative and non-perturbative aspects of QCD

- A tiny fraction of available results are discussed. What have we learned?
 - Measurements of jet fragmentation for different species of jets in pp collisions provide a powerful test of the available theoretical models
 - Studying modification of jet fragmentation from small to large collision systems offers excellent opportunities to improve our understanding of collision dynamics in QCD
 - Measurements of particle species in high particle-density environment (e.g., in jets) put important constraints on both perturbative and non-perturbative aspects of QCD
 - More precise and differential measurements with larger sample of data and smaller uncertainties (e.g., using Run 3 data) should contribute to unveiling the intricacies of particle production under the influence of strong interaction

- A tiny fraction of available results are discussed. What have we learned?
 - Measurements of jet fragmentation for different species of jets in pp collisions provide a powerful test of the available theoretical models
 - Studying modification of jet fragmentation from small to large collision systems offers excellent opportunities to improve our understanding of collision dynamics in QCD
 - Measurements of particle species in high particle-density environment (e.g., in jets) put important constraints on both perturbative and non-perturbative aspects of QCD
 - More precise and differential measurements with larger sample of data and smaller uncertainties (e.g., using Run 3 data) should contribute to unveiling the intricacies of particle production under the influence of strong interaction

New results incoming...Stay tuned!

- A tiny fraction of available results are discussed. What have we learned?
 - Measurements of jet fragmentation for different species of jets in pp collisions provide a powerful test of the available theoretical models
 - Studying modification of jet fragmentation from small to large collision systems offers excellent opportunities to improve our understanding of collision dynamics in QCD
 - Measurements of particle species in high particle-density environment (e.g., in jets) put important constraints on both perturbative and non-perturbative aspects of QCD
 - More precise and differential measurements with larger sample of data and smaller uncertainties (e.g., using Run 3 data) should contribute to unveiling the intricacies of particle production under the influence of strong interaction

New results incoming...Stay tuned!

Thank you for your kind attention

Subjet fragmentation

ALICE, JHEP 05 (2023) 24

Subjet observables are sensitive probes of jet quenching in heavy-ion collisions. They can

- Probe high-z fragmentation
- Test the universality of jet fragmentation in QGP
- Measure energy loss at the cross section level

Cluster inclusive jets with radius R

 \Box Recluster with anti- k_{T} algorithm with radius r

 \succ For $z_r > 0.5$, leading and inclusive subjet distributions are identical

- \succ For $z_r > 0.5$, leading and inclusive subjet distributions are identical
- \succ As z_r becomes small,
 - > Inclusive subjet distribution grows due to soft radiations emitted from leading subjet

 \succ For $z_r > 0.5$, leading and inclusive subjet distributions are identical

\succ As z_r becomes small,

- > Inclusive subjet distribution grows due to soft radiations emitted from leading subjet
- Leading subjet distribution falls to zero

 No modification of z_r distribution in central Pb-Pb compared to pp collisions within uncertainties

ALICE, JHEP 05 (2023) 24

No modification of z_r distribution in central Pb-Pb compared to pp collisions within uncertainties

Quenched jets at larger z_r (region of quark-dominated jets) are narrower in JEWEL and JETSCAPE than in data

ALICE, JHEP 05 (2023) 24

ALICE, JHEP 05 (2023) 24

No modification of z_r distribution in
central Pb-Pb compared to pp
collisions within uncertainties

Quenched jets at larger z_r (region of quark-dominated jets) are narrower in JEWEL and JETSCAPE than in data

Hint of hardening effects in Pb-Pb

ALICE, JHEP 05 (2023) 24

No modification of z_r distribution in
central Pb-Pb compared to pp
collisions within uncertainties

Quenched jets at larger z_r (region of quark-dominated jets) are narrower in JEWEL and JETSCAPE than in data

Hint of hardening effects in Pb-Pb

The large- z_r region, although theoretically challenging even in pp, is interesting to study jet modification in heavy-ion collisions

Fragmentation of Λ_c^+ **- and D**⁰**-tagged jets**

$$z_{||}^{\rm ch} = \frac{\vec{p}_{\rm ch jet} \cdot \vec{p}_{\rm H_Q}}{\vec{p}_{\rm ch jet} \cdot \vec{p}_{\rm ch jet}}$$

Fragmentation of Λ_c^+ **- and D**⁰**-tagged jets**

$$r_{||}^{ch} = \frac{\vec{p}_{ch jet} \cdot \vec{p}_{H_Q}}{\vec{p}_{ch jet} \cdot \vec{p}_{ch jet}}$$

Prottoy Das for ALICE, ATLAS, CMS & LHCb

0.7

0.8

0.9

 Z_{\parallel}^{ch}

0.6

0.5

1.5

0.4

ALI-PUB-569696

MC/data

ALICE, Phys. Rev. D 109 (2024) 072005

Fragmentation of Λ_c^+ **- and D**⁰**-tagged jets**

Prottoy Das for ALICE, ATLAS, CMS & LHCb

ALICE, Phys. Rev. D 109 (2024) 072005

Fragmentation of b-jets

Angle-ordered parton shower provides a better description of data than dipole-based parton shower

ATLAS, JHEP 12 (2021) 131

Enhanced deuteron coalescence probability in jets

- Measurements of light (anti)nuclei production in and out of jets may provide important input for the estimates of the background of (anti)nuclei in indirect dark matter searches
- Hadrons in jet cone are closer in phase space than those out of the jets, resulting in larger coalescence probability in jets
- □ The coalescence probability for deuterons can be quantified by the coalescence parameter B_2 :

$$B_2 = \left(\frac{3}{2\pi p_{\rm T}^{\rm d}} \frac{d^2 N_{\rm d}}{dy dp_{\rm T}^{\rm d}}\right) / \left(\frac{3}{2\pi p_{\rm T}^{\rm p}} \frac{d^2 N_{\rm p}}{dy dp_{\rm T}^{\rm p}}\right)$$

where the labels d and p indicate deuteron and proton, respectively

- > Enhancement of deuteron coalescence probability in jets is observed compared to underlying events, by a factor ~10
- Decisively proves the formation of bound states by coalescence when nucleons have a smaller average phase-space distance, as in jet cone
- Further investigations of coalescence parameters will provide useful insights into the production mechanisms of (anti)nuclei in our galaxy and help to constrain the coalescence models

> Modification of z and ξ in heavy-ion collisions

- > Modification of z and ξ in heavy-ion collisions
- \succ Enhancement at low and high z, suppression at intermediate z
- > Enhancement at high ξ , suppression at intermediate ξ
- Modification of z distribution independent of collision energy (at TeV energy scale)
Jet fragmentation: z

- Jet fragmentation for inclusive jets
- > All the P YTHIA 6 tunings show good agreement with data
- Different tunes of Herwig show discrepancies with data
- > PYTHIA 8 and Sherpa provide a poor description of data

Jet fragmentation: ξ

 \Box ξ distribution highlights the low-*z* region

- Hump-back plateau structure observed
- Suppression of low momentum particle production by QCD coherence

Prottoy Das for ALICE, ATLAS, CMS & LHCb