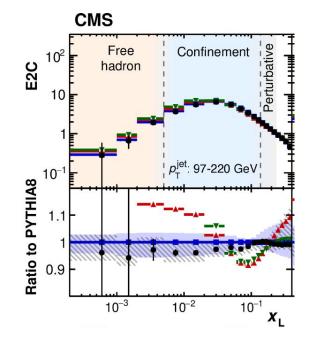
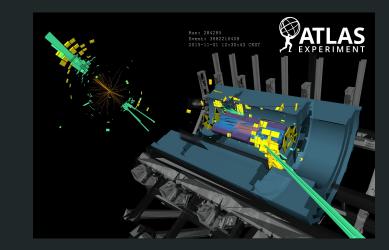
Precision QCD Measurements from ATLAS, CMS, ALICE & LHCb


Tim Martin (STFC) 7th June 2024 LHCP - Boston

Science and Technology Facilities Council

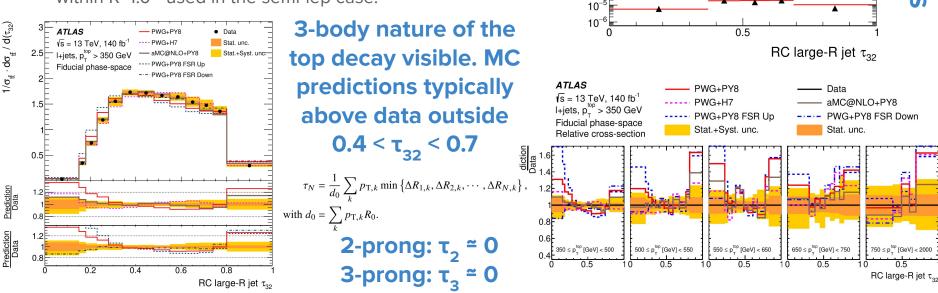
Introduction


- Focus today on some **select recent results** from LHC experiments with sensitivity to the modelling of QCD.
- Starting at the perturbative energy scale of the top and the Z, and then working down to the non-perturbative domain.
- **Taster** focus briefly on one interesting aspect of each analysis, with a recency-bias. Try and compliment the plenary & other more focused presentations.
- Measurements are all unfolded to a particle level definition, unless otherwise specified.

2402.13864

Jet substructure in boosted tt events

13 TeV pp, 140 fb⁻¹



arXiv:2312.03797, submitted to PRL

December 2023

- Single leptonic decay selection events:
 - \circ 83.0k data events vs 97.2 \mp 3.7k expected.
 - 9271% signal efficiency
- Fully hadronic decay selection L-R-Jets:
 - \circ 30.5k data vs 36.5 \mp 1.4k expected.
 - \circ 6571% signal efficiency.
- Many unfolded 1D (and 2D) correlators
 - τ_{32} : Ratio of 3-to-2 sub-jettiness variable.
- RC = trimmed large-R Re-Clustered jets, from R=0.4 jets within R=1.0 used in the semi-lep case.

/GeV

 $dp_T^{top})$

 r_{32}

do_{tt}∕(d

/σ_{tī} (

10

10

10

10

10⁸ **→ ATLAS**

 $10^7 = \sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$

 10^{6} |+jets, $p_{\tau}^{top} > 350 \text{ GeV}$

10⁵ Fiducial phase-space

JHEP 1103:015,2011

145 GeV < m, < 205 GeV

 $\frac{0.4}{\tau_3^{}/\tau_2^{}}$ of jet

0.06

Q 0.04

8 0.03

0.02

0.01

Top jets

QCD jets

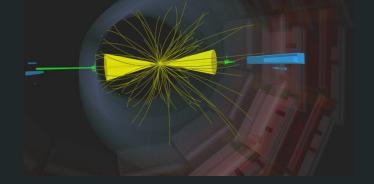
MC: NLO ME + LO PS

• $(x10^4), 350 < p_T^{top} [GeV] \le 500$ • $(x10^3), 500 < p_T^{top} [GeV] \le 550$

• $(x10^2), 550 < p_{-}^{top} [GeV] \le 650$

□ $(x10^{1}), 650 < p_{-}^{top} [GeV] \le 750$

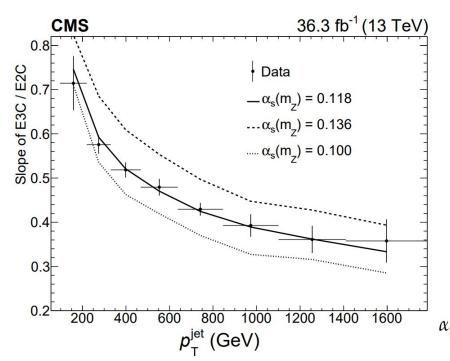
▲ (x10⁰), 750 < p₊^{top} [GeV] ≤ 2000

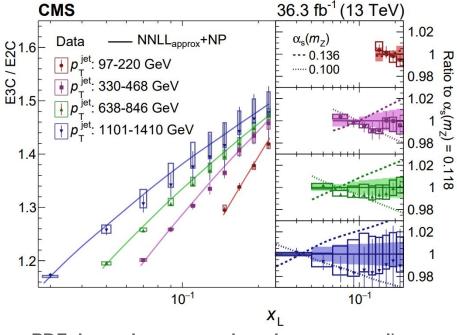

- PWG+PY8

Energy correlators inside jets & determination of $a_{s}(m_{7})$

13 TeV pp, 36.3 fb⁻¹

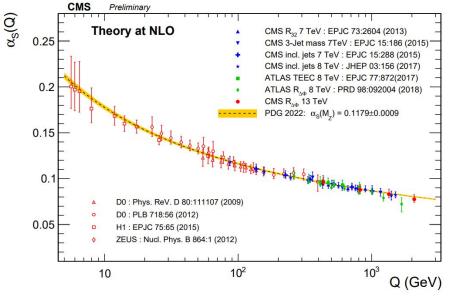
CMS Experiment at the LHC, CERN Data recorded: 2016-Sep-03 10:52:42.509184 GMT Run / Event / LS: 279966 / 451237695 / 316



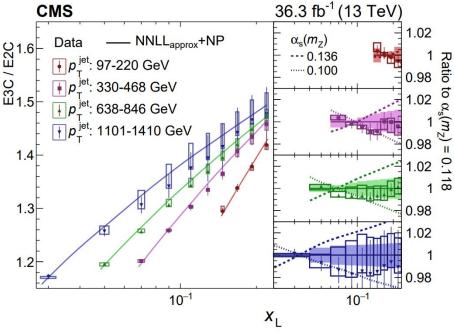

arXiv:2402.13864, submitted to PRL

February 2024

- Two- and three-particle correlators EC2, EC3 have different dependencies on α_s and its higher order expansion terms.
- x_L: Largest angular distance between pair (pairs from triplet) in EC2 (EC3)
- LL approximation: EC3/EC2 \simeq linear in $\alpha_s \ln x_1$



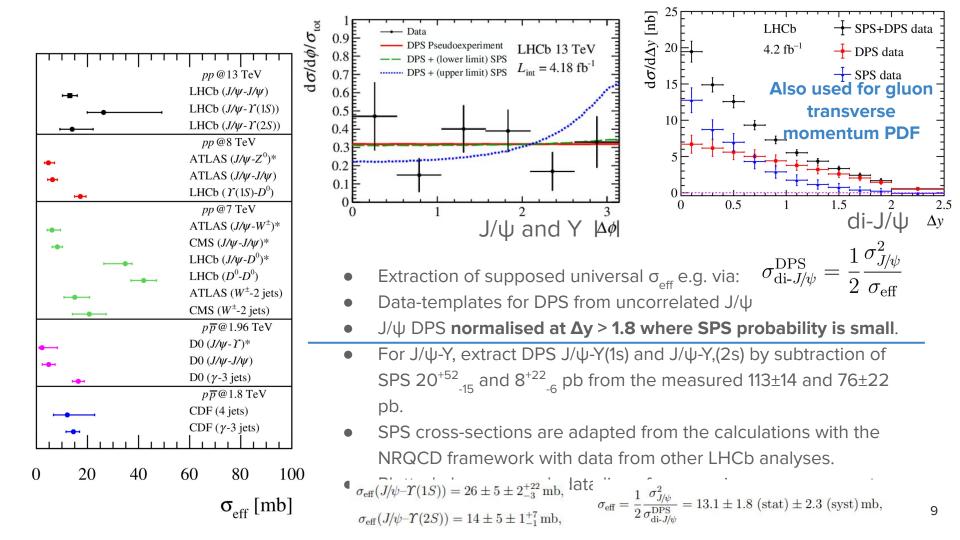
- PDF dependence on α_s largely suppressed!
- Shape of the ratio fitted vs jet p_T. Dominant systematics theory renormalisation scale (2.4%), jet energy scale (2.3%). Overall, ⁺³₋₄% uncertainty.


Most precise a_s from jet substructure

 $lpha_{
m S}(m_Z) = 0.1229^{+0.0014}_{-0.0012} \, ({
m stat})^{+0.0030}_{-0.0033} \, ({
m theo})^{+0.0023}_{-0.0036} ({
m exp})$ 6

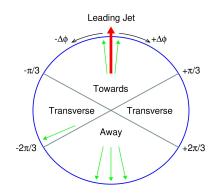
- Two- and three-particle correlators EC2, EC3 have different dependencies on α_s and its higher order expansion terms.
- x_L: Largest angular distance between pair (pairs from triplet) in EC2 (EC3)
- LL approximation: EC3/EC2 \simeq linear in $\alpha_s \ln x_1$

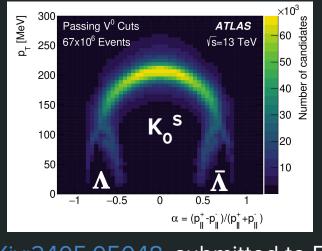
- PDF dependence on α_s largely suppressed!
- Shape of the ratio fitted vs jet p_T . Dominant systematics theory renormalisation scale (2.4%), jet energy scale (2.3%). Overall, $^{+3}_{-4}$ % uncertainty.


Most precise a_s from jet substructure

 $\alpha_{\rm S}(m_{\rm Z}) = 0.1229^{+0.0014}_{-0.0012} \, ({\rm stat})^{+0.0030}_{-0.0033} \, ({\rm theo})^{+0.0023}_{-0.0036} ({\rm exp})_{-7}$

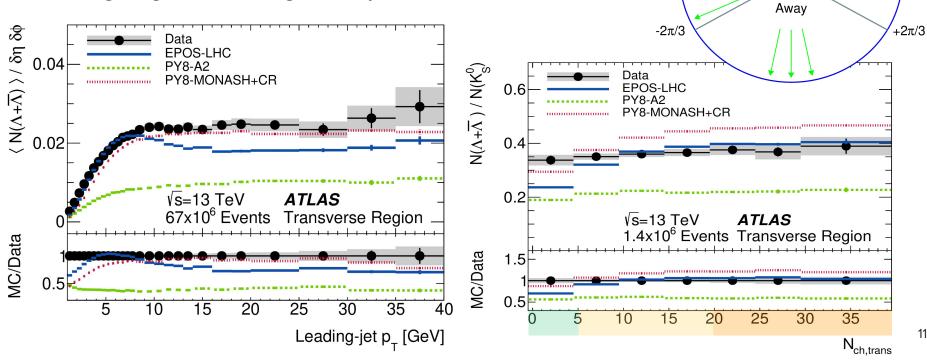
Associated J/ψ and Y Prod & J/ψ-Pair Prod.


13 TeV pp, 4 fb⁻¹ - 4.2 fb⁻¹ (Not unfolded to particle level)



Underlying Event with Strange Hadrons

13 TeV pp, 67x10⁶ Events



arXiv:2405.05048, submitted to EPJC

May 2024

- Underlying event in **strange hadrons** (Λ^{0} and K^{0}_{s}) via displaced vertices, as a test of hadronisation.
- Mean per-event or strange-baryon to strange-meson yields.
- Harder region 10 < p_T jet < 40 GeV investigated vs. the number of prompt particles in the transverse region - MPI proxy.
- Large degree of modelling variability between MCs.

Leading Jet

Towards

 $+\Delta\phi$

Transverse

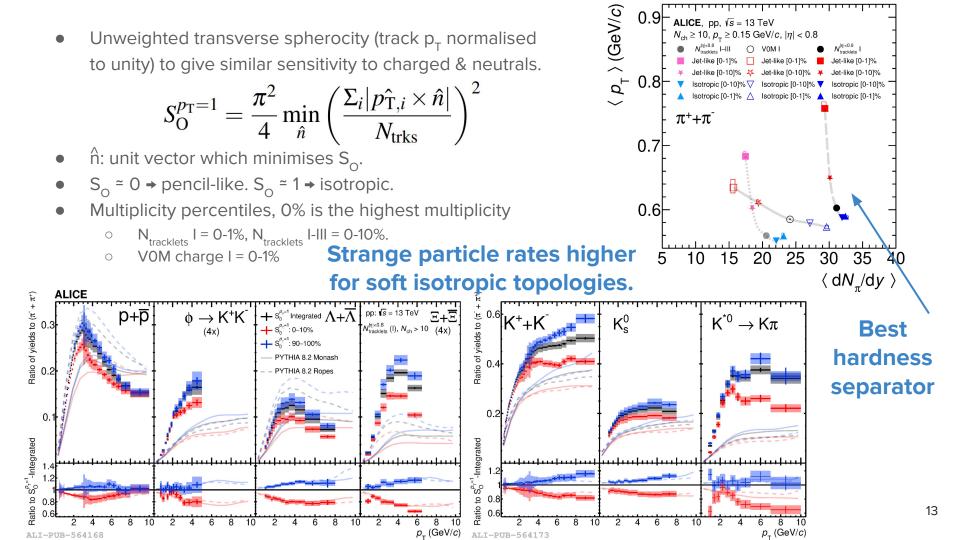
 $+\pi/3$

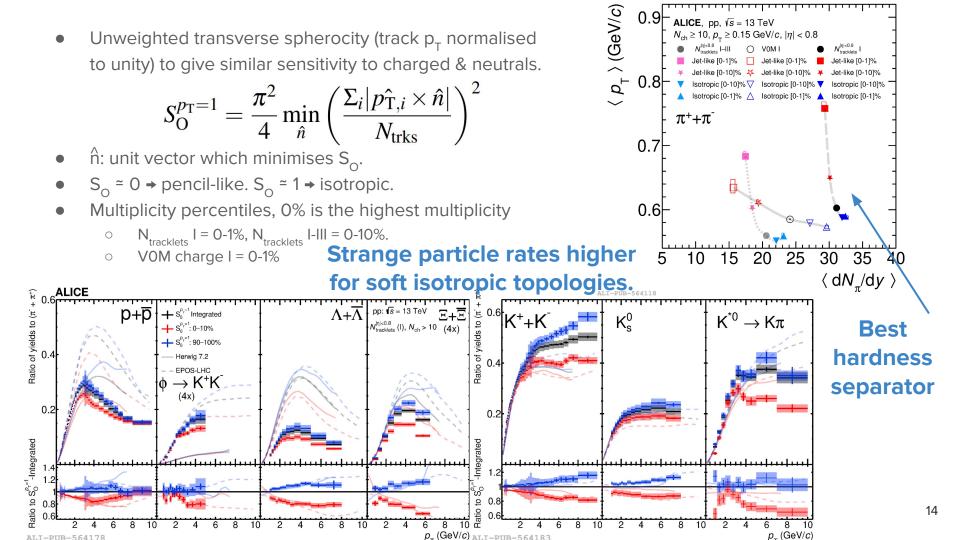
 $-\Delta \phi$

Transverse

-π/3

Light Flavour Production as a Function of Transverse Spherocity


13 TeV pp



arXiv:2310.10236, submitted to JHEP

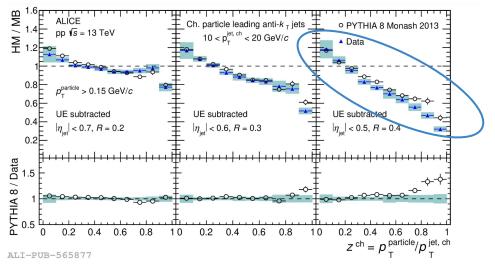
October 2023

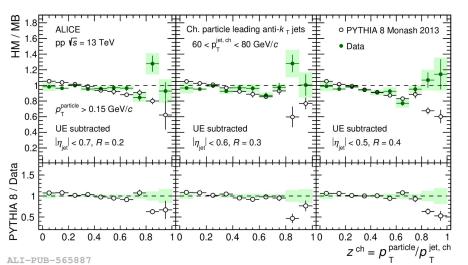
Work continues in earnest on LHC experiments to measure novel QCD observables at world-record precisions.

Sophistication of analysis methods is continuing to advance with time as the LHC experiments mature in their physics programmes.

QCD probes are investigated at all energy-scales of perturbative and non-perturbative coupling strengths.

Multiplicity Dependence of Charged Particle Intra-Jet Properties


13 TeV pp, 32 nb⁻¹ - 10 pb⁻¹



arXiv:2311.13322, submitted to EPJC

November 2023

Intra-jet properties of charged-particle jets

$$z^{ch} = \frac{p_{T}^{particle}}{p_{T}^{jet,ch}} \qquad \xi^{ch} = \ln\left(\frac{1}{z^{ch}}\right)$$

- For Anti- k_t jets R = 0.2, 0.3, 0.4, differential in jet p_T from 10 to 80 GeV
- Minimum-Bias (MB) and High-Multiplicity (HM) event categorisation - with VOM charge greater than 5 times the mean for the latter.

Pythia 8 qualitativly reproducing MinBias and HighMulti. for z^{ch} , ξ^{ch} . Fragmentation prob. suppressed in high z^{ch} in HighMulti. w.r.t MinBias. Most pronounced at low jet p_T and for jet radius.