Collider Probes of TeV Scale Dark Sector

Dipan Sengupta University of New South Wales, Sydney

Dark Matter through the ages

Dark Matter through the ages

Properties and the Particle Physics of Dark Matter

- Cold and Neutral: Non relativistic today.
- Preserves the success of Big Bang Nucleosynthesis (Formation of Atoms and Nuclei in the early Universe)
- "Almost" **Dark** with respect to other forces of nature.
- Collisionless within the DM sector at large scales.
- Stable, on Cosmological time scales.
- Forms halos in the galaxy

Dark Matter belongs in Astronomy/Cosmology. Why should we care about colliders?

Dark Matter at Colliders

Comment: Even in the event of a

missing energy signature, we can't be sure it is dark matter

Classifying Dark Sector Searches

emerging jets, leptons

Mining, machine learning

Formation

Theoretical Considerations for freeze-out :

 $M_{DM} \sim \mathcal{O}(\text{few GeV}) \rightarrow \mathcal{O}(10^{\circ}\text{s TeV})$

Can we push/evade these limits for colliders?

- 1. Relic Considerations : Superwimp mechanisms, non-thermal production
- 2. Collider Considerations : Build Bigger Colliders.

Example 1:

Is the light thermal SUSY neutralino dead?

For thermal freeze-out need efficient annihilation mechanism to deplete the abundance for SUSY DM

Higgs/Z Funnel, Dark Matter annhilation into SM through the Higgs

- 1. Depending on the mass and the gauge content of the neutralino, it can annihilate via a variety of channels.
- 2. Requires a mediator particle that interacts with the standard model.

Heavy vs light Neutralino

The Light Neutralino: Alive in 2017 and may be dead in 2023

The allowed regions consistent with constraints from H-> Invisible , Z-> Invisible, gaugino searches and direct detection are at the Z resonance and the Higgs resonance

G. Belanger, B. Bhattacharjee, R. Barman, R. Godbole, *R. Sengupta*. *PRL2023*

Heavy neutralinos, Winos and Higgsinos

		Indirect		Pure Higgsir
FCC-hh		FCC-hh		
FCC-eh	$p \xrightarrow{\chi^{\pm}} \xrightarrow{\pi^{\pm}}$	FCC-eh		p χ^{\pm} π^{\pm} r
HE-LHC	$p \rightarrow \chi^{\pm} \rightarrow \pi^{\pm}$	HE-LHC		$p \xrightarrow{\chi_{\pm}} \pi^{\pm} c$
HL-LHC	20 Indie isappearing Tracks	HL-LHC		2σ , Disappearing Tra
CLIC ₃₀₀₀	HE-LHC HE-LHC HE-LHC HE-LHC HE-LHC HE-LHC HE-LHC HE-LHC HE-LHC HE-LHC HE-LHC HE-LHC HE-LHC HE-LHC	CLIC ₃₀₀₀		Kinematic Limit: √
$e \xrightarrow{\chi^{\pm}} \xrightarrow{\pi^{\pm}} \xrightarrow{\chi^{0}}$		ILC	7	2σ , Indirect Re
FCC-ee $e \xrightarrow{\chi^{\pm}} \xrightarrow$	CLIC ₃₈₀ FCC-ee CEPC	CLIC ₃₈₀		$e \xrightarrow{\chi^{\pm}} \xrightarrow{\chi^{0}}$
CEPC Preliminary	Thermal European Strategy	FCC-ee		$e^{-\chi^{\pm}}$
0.1 0.5 1	5 10	CEPC	Preliminarv	Thermal European Stra
M_{χ} [TeV]		0.1 0.2	0.5 1	2 5
			M_{χ} [TeV	

Heavy neutralinos and light neutralinos

Lepton Collider Projections: Higgsinos And WINO

Z. Liu and L.-T. Wang, Physics at Future Colliders: the Interplay Between Energy and Luminosity, in 2022 Snowmass Summer Study, 4, 2022 [2205.00031].

EFTs and simplified models

 $= \sum_{f=u,d,s,c,b,t,e,\mu,\tau} \left(\frac{C_1^J}{\Lambda^2} \bar{f} f \bar{\chi} \chi + \frac{C_2^J}{\Lambda^2} \bar{f} \gamma_5 f \bar{\chi} \gamma_5 \chi + \cdots \right)$ $\mathcal{L}_{\text{DM-EFT}} =$

Described by the mass of the dark matter, and the couplings

The most typical basis for Direct and indirect Detection

 $\{m_{\chi}, C_n^f/\Lambda^2\}$

LHC DM simplified models

Working group

Instead, work in a basis of simplified Models with a generic mediator and couplings

Simplified models s-channel vs t-channel

$$\mathcal{L}_{\text{fermion},\phi} \supset -g_{\chi}\phi\bar{\chi}\chi - \frac{\phi}{\sqrt{2}}\sum_{i} \left(g_{u}y_{i}^{u}\bar{u}_{i}u_{i} + g_{d}y_{i}^{d}\bar{d}_{i}d_{i} + \mathcal{L}_{\text{fermion},a}\right) - ig_{\chi}a\bar{\chi}\gamma_{5}\chi - \frac{ia}{\sqrt{2}}\sum_{i} \left(g_{u}y_{i}^{u}\bar{u}_{i}\gamma_{5}u_{i} + g_{d}y_{i}^{d}\bar{d}_{i}d_{i}\right)$$

Fermion singlet DM

$$\mathcal{L}_{\text{fermion},H} \supset -\mu_s s^3 - \lambda_s s^4 - y_\chi \bar{\chi} \chi s - \mu_p s |H|^2$$

$\left. \left\{ \frac{1}{m_{\chi}}, m_{\phi/a}, g_{\chi}, g_{u}, g_{d}, g_{\ell} \right\} \right\}$

Dominant decay modes if $m_{\phi/a} > 2m_t \quad g_u \gtrsim g_\chi$

$$-\lambda_p s^2 |H|^2$$

- 1. Strong constraints from direct detection searches
- 2. Strong constraints from collider searches
- 3. Radiative (1-loop) effects can be strong in direct detection

Let's illustrate this using a Simplified Model

$$\mathcal{L} \supset \sum_{i} (D_{\mu} X_{i})^{\dagger} (D^{\mu} X_{i}) + \sum_{i,j} \left(g_{\mathrm{DM},ij} X_{i}^{\dagger} \bar{\chi} P_{R} q_{j} + g_{\mathrm{DM},ij}^{*} X_{i} \bar{q}_{j} P_{L} \chi \right)$$

A Majorana Fermion Dark Matter (Neutralino) interacting with Scalar Colored Scalar Mediators (Squarks)

$$g_{X} m_{f}^{2} \sqrt{1 - \frac{m_{f}^{2}}{m_{X}^{2}}g} g_{4\pi(m_{X}^{2} + m_{\tilde{q}}^{2})^{2}} + \beta^{2} \left\{ \frac{m_{\chi}^{2} \sqrt{m_{\chi}^{4} + m_{\tilde{q}}^{4}}}{32\pi(m_{\chi}^{2} + m_{\tilde{q}}^{2})^{4}} + \mathcal{O}(m_{f}^{2}) \right\} \right]$$

$$nden' part (sewave) \qquad Velocity dependent part (p wave)$$

$$g_{g}$$

$$do Gored Annihilation \\ Colored Annihilation \\ M Colored$$

115

Spin-Independent : Coherent interaction with the whole Atomic Spin-Dependent : For Axial Vector coupling, couples to the

- Given a DM model, v cross sections at the (
- Spin-Indepedent limi

Is the spin-independent 1-loop more sensitive than the tree level spin-dependent direct detection limit?

 $\mathcal{L}_{int} = \sum_{q=u,d,s,c,b,t} g_{DM} \left(\tilde{q}_L^* \bar{\chi} P_L q + h.c. \right)$

 $_{IR}ert^2$.

 $\left(\tilde{q}_L^* \bar{\chi} P_L q + h.c.\right)$

Is the spin-independent 1-loop more sensitive than the tree level spin-dependent direct detection limit?

See K. Mohan, <mark>DS</mark>, T. T

 $\mathcal{L}_{int} = \sum_{q=u,d,s,c,b,t} g_{DM} \left(\tilde{q}_L^* \bar{\chi} P_L q + h.c. \right)$

 $_{IR}ert^2$.

We also need a Renormalization Group Evolution

At what scale do we define coupling and masses? If at nuclear scale, to compare to LHC we should run up, for the reverse, run down.

Factor 4 enhancement in cross-section

See K. Mohan, DS, T. Tait, B.Yan, C.P Yuan. JHEP 05 (2019) 115 for details

Constraints for the Simplified Model

Take home message Precision Calculations can significantly improve constraints on the coupling (DM interaction)

Coannihilation Radiative $n_{eq}^{n_{eq},i}$

Let's go deeper into the same model, think of small mass gap between DM and mediator $n = \sum_{i=1}^{N} n_i$

Large mass gap,

	only relev	ant process	
nschaft	Julia H	arz Importance of exclusion or c	non-perturbative effects for the iscovery of dark matter models

$$\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_\chi$$

$$s\delta \qquad g_s^4 e^{-2x\delta} \qquad \delta = \frac{\Delta}{m_{\rm DM}}$$

Let's go deeper into the same model, think of small mass gap between DM and mediator $n = \sum_{i=1}^{N} n_i \quad n_i = \sum_{i=1}^{N} n_i n_i$

$$\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_\chi$$

i=1

Let's go deeper into the same model, think of small mass gap between DM and mediator $n = \sum_{i=1}^{N} n_i \quad n = \sum_{i=1}^{N} n_i = \sum_{i=1}^{N} n_i n_i$

Two further novel effects can affect the velocity averaged cross section

$$\delta \equiv \frac{m_X - m_\chi}{m_\chi} \equiv \frac{\Delta m}{m_\chi}, \quad \Delta m \equiv m_Z$$

Sommerfeld Enhancement and Dound State ronnation in relic abundance

$$\begin{bmatrix} -\frac{\nabla^2}{2\mu} + V_{[\hat{\mathbf{R}}]}^{\mathrm{S}}(\mathbf{r}) \end{bmatrix} \phi_{\mathbf{k}} (\mathbf{r}_{Popration} + \mathbf{r}_{Popration} + V(r)_{Popration} + V(r)_{Poprati$$

Julia Harz

Importance of non-perturbative effects for the exclusion or discovery of dark matter models

Sommerfeld Enhancement and Dound State ronnation in relic abundance

Bound State Formation

$$\left[-\frac{\nabla^2}{2\mu} + V_{[\hat{\mathbf{R}}]}^{\mathrm{S}}(\mathbf{r})\right] \phi_{\mathbf{k}}(\mathbf{r}_{\substack{\text{Noether-Programm}\\ \text{Programm}}} \phi_{\mathbf{k}}(\mathbf{r}_{\mathbf{k}}) \phi_{\mathbf{k}}(\mathbf{r}_{\substack{\text{Noether-Programm}\\ \text{Programm}}} \phi_{\mathbf{k}}(\mathbf{r}_{\mathbf{k}}) \phi_{\mathbf{k}}(\mathbf{r}_{\mathbf{$$

$$\sigma_{\rm SE} = S_0 \left(\frac{\alpha_s^S C_{[\hat{\mathbf{R}}]}}{v_{\rm rel}} \right) \, \sigma_0$$

Julia Harz

Importance of non-perturbative effects for the exclusion or discovery of dark matter models

Sommerfeld Enhancement-and bound state rormation in relic abundance

- Relevant for $\alpha \sim v_{
 m rel}$
- Exchange of n gluons lead to

Julia Harz

Importance of non-perturbative effects for the exclusion or discovery of dark matter models

bound state formation **bound state ionisation**

bound state decay

Sommerfeld Enhancement-and bound state rormation in relic abundance

- Relevant for $\alpha \sim v_{
 m rel}$
- Exchange of n gluons lead to

Impact of Sommerfeld Enhancement and bound states

- DD and LHC searches set upper bound on g_{DM}
- Requirement of non-overproduction sets lower bound on g_{DM} \bullet
 - \rightarrow Correction on g_{DM} due to SE and BSF lead to altered exclusion limits
 - \rightarrow opens up parameter space that was previously thought to be excluded

The package is now implemented in MicrOmegas Dark Matter Tool ts for the M. Becker, E. Copello, J. Harz K. Mohan, DS. JHEPO8(2022) 145

1. The model tightly constrained by Direct Detection, 2. Model parameters then relaxed by SE + BSF.

Alternative Mechanisms of Dark Matter Production

Tweaked from arXiv:0911.1120

Freeze-in: general idea

arXiv:hep-ph/0106249 arXiv:0911.1120 ar $i_1 : 17.607 + 2...$

Cosmological Probes of SuperWIMP Dark Matter

What if Neutralinos are not the Lightest SUSY particle, but next to lightest?

- In Supergravity inspired Supersymmetry scenarios, the gravitino can be the lightest particle, and very very weakly coupled to the neutralino, leading to a long lived neutralino (decaying to a gravitino + a Photon).
- The neutralino (a WIMP) can Freeze-out, and long afterwards decay to gravitino (SuperWIMP).
- Being extremely long lived it will escape the detector without a trace (No prompt searches).
- However it will leave definite signatures in Cosmology due to energy dump as photon.

The gravitino mass is a free parameter related to the SUSY breaking scale F

Feng, Rajaraman, Takayama hep-ph/0306204

Cosmological Probes of SuperWIMP Dark Matter

What if Neutralinos are not the Lightest SUSY particle, but next to lightest?

- In Supergravity inspired Supersymmetry scenarios, the gravitino can be the lightest particle, and very very weakly coupled to the neutralino, leading to a long lived neutralino (decaying to a gravitino + a Photon).
- The neutralino (a WIMP) can Freeze-out, and long afterwards decay to gravitino (SuperWIMP).
- Being extremely long lived it will escape the detector without a trace (No prompt searches).
- However it will leave definite signatures in Cosmology due to energy dump as photon.

The gravitino mass is a free parameter related to the SUSY breaking scale F

$$|m_{\tilde{G}} \simeq \langle F \rangle / m_{\rm pl}$$

$$\begin{split} \Gamma(\chi_{1}^{0} \to \tilde{G}\gamma) &= \frac{m_{\chi_{1}^{0}}^{5}\cos^{2}\theta_{\mathrm{W}}}{6\pi m_{\mathrm{Pl}}^{2}m_{\tilde{G}}^{2}}\epsilon_{\mathrm{SM}}^{3} \left(1 + 3\frac{m_{\tilde{G}}^{2}}{m_{\chi_{1}^{0}}^{2}}\right) \\ &\simeq 1.1 \times 10^{-14} \ \mathrm{s}^{-1} \ \epsilon_{\mathrm{SM}}^{3} \left(1 + 3\frac{m_{\tilde{G}}^{2}}{m_{\chi_{1}^{0}}^{2}}\right) \\ &\times \left(\frac{m_{\chi_{1}^{0}}}{\mathrm{GeV}}\right)^{5} \left(\frac{\mathrm{GeV}}{m_{\tilde{G}}}\right)^{2}, \end{split}$$

Extremely long lived

$$L = c\tau \simeq 2.8 \times 10^{22} \left(\frac{\text{GeV}}{m_{\chi_1^0}}\right)^3 \frac{(1 - 2\epsilon_{SM})}{\epsilon_{SM}^3 (1 + 3(1 - 2\epsilon_{SM}))} m \qquad \epsilon_{SM}$$

Feng, Rajaraman, Takayama hep-ph/0306204

$$\equiv \frac{E_{\gamma}}{m_{\chi_1^0}} = \frac{m_{\chi_1^0}^2 - m_{\tilde{G}}^2}{2m_{\chi_1^0}^2}$$

Cosmological Constraints on SuperWIMPs

EPJCXXXX

Cosmological Constraints on SuperWIMPs

Cosmological constraints on Supersymmetric superWIMPs

Meera Deshpande^a, Jan Hamann^b, Dipan Sengupta^a, Martin White^a, Anthony G. Williams^a, and Yvonne Y. Y. Wong^b ^aARC Centre of Excellence for Dark Matter Particle Physics, Department of Physics, The University of Adelaide, Adelaide SA 5005, Australia and ^bSydney Consortium for Particle Physics and Cosmology, School of Physics, The University of New South Wales, Sydney NSW 2052, Australia

Cosmological Constraints on SuperWIMPs

Cosmological constraints on Supersymmetric superWIMPs

Meera Deshpande^a, Jan Hamann^b, Dipan Sengupta^a, Martin White^a, Anthony G. Williams^a, and Yvonne Y. Y. Wong^b ^aARC Centre of Excellence for Dark Matter Particle Physics, Department of Physics, The University of Adelaide, Adelaide SA 5005, Australia and ^bSydney Consortium for Particle Physics and Cosmology, School of Physics, The University of New South Wales, Sydney NSW 2052, Australia

C. Arina, DS, et al. To appear soon

DARK MATTER VIA *t*-CHANNEL PRODUCTION COSMOLOGY SECTION

A PREPRINT

LHC Dark Matter Working Group

Dark Matter populated through extremely weakly coupled systems is difficult to probe

Consider an extension of the SM by a Z_2 -odd real singlet scalar *s* (DM) along with a Z_2 -odd vector-like SU(2)-singlet fermion *F* (parent).

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \partial_{\mu}s \; \partial^{\mu}s - \frac{\mu_s^2}{2}s^2 + \frac{\lambda_s}{4}s^4 + \lambda_{sh}s^2 \left(H^{\dagger}H\right) + \bar{F}\left(iD\right)F - m_F\bar{F}F - \sum_f y_s^f \left(s\bar{F}\left(\frac{1+\gamma^5}{2}\right)f + h\right)$$

"Heavy d-quark"

Consider an extension of the SM by a Z_2 -odd real singlet scalar *s* (DM) along with a Z_2 -odd vector-like SU(2)-singlet fermion F (parent).

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \partial_{\mu} s \; \partial^{\mu} s - \frac{\mu_s^2}{2} s^2 + \frac{\lambda_s}{4} s^4 + \lambda_{sh} s^2 \left(H^{\dagger} H \right) + \bar{F} \left(iD \right) F - m_F \bar{F} F - \sum_f y_s^f \left(s \bar{F} \left(\frac{1 + \gamma^5}{2} \right) f + \text{h.c.} \right)$$

Assuming that DM is mostly populated by *F* decays, we can relate the relic abundance with the parent particle lifetime:

$$c\tau \approx 4.5 \,\mathrm{m} \,\xi g_F \left(\frac{0.12}{\Omega_s h^2}\right) \left(\frac{m_s}{100 \mathrm{keV}}\right) \left(\frac{200 \mathrm{GeV}}{m_F}\right)^2 \left(\frac{102}{g_*(m_F/3)}\right)^{3/2}$$

Freeze-in favours long lifetimes, unless

Dark matter is very light

Cosmological constraints

f = { Parent particle lifetime and

→ $f = \{$ Assuming that DM is mostly populated by F decays abundance with the parent particle lifetime:

$$f = \{ c\tau \approx 4.5 \text{ m} \xi g_F \left(\frac{0.12}{\Omega_s h^2}\right) \left(\frac{m_s}{100 \text{keV}}\right) \left(\frac{200 \text{GeV}}{m_F}\right)^2$$

G. Belanger, J.Zurita, ..., **DS**, JHEP 02 (2019) 186

Julia Harz

LHC friendly minimal freeze-in models

Julia Harz

LHC friendly minimal freeze-in models

DT: Order-of-magnitude difference in peak sensitivity between ATLAS/CMS

G. Belanger, J. Zurita, DS ... JHEP 02 (20

We are in uncharted territory, But the ride is exciting

International Workshop

International Joint Workshop on the Standard Model and Beyond 2024 & 3rd Gordon Godfrey Workshop on Astroparticle Physics

9-13 Dec 2024 Australia/Sydney timezone

Dur first objective
this of the enveron above
ends the spin indepet
in deneration term contain
solution and the property
charactions as
$$M_{i}$$
 to M_{i}
charactions as M_{i} to M_{i}
there is the independent
 M_{i} there is a charaction for
 M_{i} therefore deal M_{i} to M_{i}
is $\frac{Determine}{Determine} M_{i}$ by M_{i}
is $\frac{Determine}{M_{i}} M_{i}$ to M_{i}
is $\frac{Determine}{M_{i}}$

loop effective interaction for

