Leptoquark searches with 3rd generation final states

Large Hadron Collider Physics Conference

Northeastern University, Boston June 4th 2024

Patrick Rieck New York University

on behalf of the ATLAS collaboration

Tensions in the Flavour Sector

LHCb

- Flavour puzzle: why three generations of fermions?
- Still tension between theory and experiment in the flavour section for several observables

Exp. Average
20.0
20.5
21.0
21.5
22.0
22.5
a, × 10⁹ - 1165900

FNAL

Patrick Rieck · NYU

HFLAV

Leptoquarks

- Several extensions of the Standard Model addressing the flavour puzzle include particles carrying both baryon and lepton number: Leptoquarks
 - Mediators of quark / lepton interaction
 - Color and electroweak quantum numbers
 ⇒ strong and electroweak production
- Many possible types of leptoquarks
 - Some preference for 3rd generation couplings

Table 1

PLB 191, 1

Quantum numbers of scalar and vector leptoquarks with $SU(3) \times SU(2) \times U(1)$ invariant couplings to quark-lepton pairs $(Y = Q_{em} - T_3)$.

	Spin	F=3B+L	SU(3) _c	$SU(2)_W$	$U(1)_{\gamma}$
S,	0	-2	3*	1	13
$\mathbf{\tilde{S}}_{1}$	0	-2	3*	1	43
S ₃	0	-2	3*	3	ł
V ₂	1	-2	3*	2	흉
$\mathbf{\tilde{V}}_{2}$	1	-2	3*	2	- t
\mathbf{R}_2	0	0	3	2	7
$\mathbf{\tilde{R}}_2$	0	0	3	2	ł
U,	1	0	3	1	23
$\tilde{\mathbf{U}}_1$	1	0	3	1	5
U ₃	1	0	3	3	23

Identification of 3rd generation fermions

<u>ATLAS-FTAG-2019-005</u> <u>ATL-PHYS-PUB-2019-033</u>

- Over the second second
- Improvements of b-jet and hadronic tau-decay identification via deep learning, more improvements in preparation for Run 3 (<u>Graph Neural Networks</u>)

Patrick Rieck · NYU

Leptoquark Pair Production bbrr Final State

- Signal region: $\tau_{had} \tau_{had}$ or $\tau_{had} \tau_{lep}$ decays, $\sum p_T > 600 \text{ GeV}$
- Background: mostly top-quark events
 - Inaccuracies of top-quark simulation Ο at high $\sum p_{\tau}$ data-driven background reweighting, using events with 2 light leptons

Ge/

8

1600

1000

800

600F

400

200

Data/Pred

1400 - ^τ_{lep}^τ_{had} Post-fit

ATLAS

- Neural Network to discriminate signals
 - Leptoquark mass as an Ο input parameter
 - 8 input variables, including Ο in particular $\sum p_{\tau}$

Leptoquark Pair Production

Fits to the Neural Network distribution

⇒ Limits on masses of various leptoquarks, depending on spin and coupling to gluons

6

Pair Production: Combination

Interpretation										
Search			Scalar				ctor	Signal Region		
Final State	Citation	LQ_3^u	LQ_3^d	LQ ^u _{mix}	LQ_{mix}^d	$U_1^{ m YM/MC}$	$ ilde{U}_1^{ m YM/MC}$	N_ℓ	$N_{ au_{ ext{had}}}$	N_{bjets}
tvbτ		\checkmark	\checkmark	-	1000	\checkmark		0	1	≥ 2
$b\tau b au$		\checkmark		-		\checkmark		$\{0, 1\}$	{1, 2}	$\{1, 2\}$
$t \tau t \tau$		_	\checkmark	-		_	\checkmark	$\{1, 2, 3\}$	≥ 1	≥ 1
tvbl		-		\checkmark	\checkmark	-	-	1	—	≥ 1
$b\ell b\ell$		_		\checkmark	<u></u>	_	_	2		$\{0, 1, 2\}$
tℓtℓ (2ℓ))		-	<u></u>	-	\checkmark	_		2	-	_
$t\ell t\ell \ (\geq 3\ell)$		-	10000	× <u> </u>	\checkmark	<u> 1997</u>	<u> 1997</u>	$\{3, 4\}$		≥ 2
tvtv		\checkmark		\checkmark		\checkmark		0	0	≥ 2
bvbv		-	\checkmark		\checkmark		_	0		≥ 2

- Statistical combination of LQ searches
 - Strong pair production
 - Multiple LQ decays \Rightarrow 9 analyses
- Spin-0 and spin-1 LQs

Pair Production: Combination

<i>x</i>				/ This	s Talk ्					
			/	In	terpretati	on				
	Search		Scalar		Vector		Signal Region			
Final S	tate Citation	LQ_3^u	LQ_3^d	LQ ^u _{mix}	LQ_{mix}^{d}	$U_1^{\rm YM/MC}$	$ ilde{U}_1^{ m YM/MC}$	N_ℓ	$N_{ au_{ ext{had}}}$	Nbjets
tvb	τ	\checkmark	\checkmark		_	\checkmark	-	0	1	≥ 2
$b\tau b$	τ	\checkmark	_	-	_	\checkmark	-	$\{0, 1\}$	$\{1, 2\}$	$\{1, 2\}$
ttta	τ	-	\checkmark	-	-	-	\checkmark	$\{1, 2, 3\}$	≥ 1	≥ 1
tvba	l	-	-	\checkmark	\checkmark	-	-	1	_	≥ 1
$b\ell b$	l	-		\checkmark	-	-	-	2	_	$\{0, 1, 2\}$
<i>tltl</i> (2	2ℓ))	-		-	\checkmark	-	<u></u>	2	_	
$t\ell t\ell$ (\geq	<i>(3ℓ)</i>	-	1000	-	\checkmark	-	_	{3,4}	-	≥ 2
tvtv	V	\checkmark		\checkmark		\checkmark	_	0	0	≥ 2
bvb	ν	-	\checkmark	-	\checkmark	-	-)	0	1	≥ 2
ų.			M	largher	rita's tal	k a				
Statistica	l combinat	ion o	FI O G	search		⁴		9 00000		$\sim U_1 g \mod$
				Jearon	100	\searrow	000000		g	
• Stro	 Strong pair production 						gL		2000	
o Mult	iple I Q de	cavs	⇒ 9	analys	ses	q	\mathcal{L}_{U_1}	g access		$\sim U_1 g \log g$
		cayo	•	Carriery		-	^g D	(U	$J_1 \qquad g_{\mathbf{T}}$	(U
	d onin 1 l	\bigcirc					, opoo	~~~~	් ීතු	
Spin-0 ar	ia spin-i L	QS					્રુજ્ય	recert		John Charles
							09999992	" Z	~	2000 22
							g 992	-51	$U_1 q \mathfrak{S}^{\mathfrak{S}}$	

Patrick Rieck · NYU

Pair Production: Combination

LQ electric charge 2/3

LQ electric charge -1/3

Pair Production: Combination Spin-1 leptoquark

- Most distinguished final state:
 bvbτ ⇒ highest sensitivity
- Yang-Mills coupling scenario: $M_{LQ} < 1,84 \text{ TeV} @ 95 \% \text{ CL}_{(s)}$

Single Leptoquark Production

- Comparison to pair production:
 - Higher cross-section for large leptoquark mass
 - Production cross-section depending on the $LQ-b-\tau$ coupling strength
- \Rightarrow Dedicated search, similar to the pair production search in the $bb\tau\tau$ channel
 - Relaxed cut $\sum p_T > 300 \text{ GeV}$
 - Dedicated Z+jets control region
 - Distinguish two regions by *b*-jet p_T, threshold 200 GeV

Single Leptoquark Production

Signal strengths constrained by $\sum p_{T}$ distributions

12

Single Leptoquark Production

Patrick Rieck · NYU

Single Leptoquark Production *b*ττ Final State

slightly

Lepton Flavour Violation in Top-Quark Interactions

• Single-top events with same-sign muon pairs:

take advantage of huge top-quark production cross-sections, searching for rare interactions

• Signal strengths constrained by $\sum p_T$ + Missing E_T distribution

Lepton Flavour Violation in Top-Quark Interactions

- General approach, several interpretations
 - Effective Field Theory
 - Top-quark decay branching ratios
 - Leptoquark

 $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum \frac{c_x}{\Lambda^2} O_x + \cdots$

Operator	Interaction	Lorentz Structure			
$O_{\sf lq}^{1(ijkl)}$	$(\bar{l}_i\gamma^\mul_j)(\bar{q}_k\gamma_\muq_l)$	Vector			
$O_{ m lq}^{3(ijkl)}$	$(\bar{l}_i\gamma^\mu\sigma^Il_j)(\bar{q}_k\gamma_\mu\sigma_Iq_l)$	Vector			
${\cal O}_{\rm eq}^{(ijkl)}$	$(\bar{e}_i \gamma^{\mu} e_j) (\bar{q}_k \gamma_{\mu} q_l)$	Vector			
$O_{ m lu}^{(ijkl)}$	$(\bar{l}_i\gamma^\mul_j)(\bar{u}_k\gamma_\muu_l)$	Vector			
${\cal O}_{\rm eu}^{(ijkl)}$	$(\bar{\mathbf{e}}_i \gamma^{\mu} \mathbf{e}_j) (\bar{\mathbf{u}}_k \gamma_{\mu} \mathbf{u}_l)$	Vector			
$O_{lequ}^{1(ijkl)}$	$(\bar{l}_ie_j)\varepsilon(\bar{q}_ku_l)$	Scalar			
${\cal O}_{\rm lequ}^{3(ijkl)}$	$(\bar{l}_i \sigma^{\mu\nu} e_j) \varepsilon (\bar{q}_k \sigma_{\mu\nu} u_l)$	Tensor			

Conclusion

- Leptoquarks as one approach to the flavour puzzle
- ATLAS Run 2 data analysed in view of single and pair production of leptoquarks, focus on decays into 3rd generation fermions
- Sensitivity driven by *b* and *r*-tagging performances, with further improvements to come for Run 3
- Started probing parameter space suggested by *B*-physics results