Searches for leptoquarks in CMS LHCP 2024

Arne Reimers on behalf of the CMS Collaboration

Introduction

- Flavor anomalies in $b \rightarrow c l \nu$ transitions and other observables
 - ► 3- σ -level tension with SM in $\mathscr{R}(D^{(\star)})$ for over a decade HFLAV
- Muon g-2 <u>PRL 131, 161802 (2023)</u>

LQ searches in CMS

Introduction

- Flavor anomalies in $b \rightarrow c l \nu$ transitions and other observables
 - ► 3- σ -level tension with SM in $\mathscr{R}(D^{(\star)})$ for over a decade HFLAV
- Muon g-2 <u>PRL 131, 161802 (2023)</u>

Introduction

- Flavor anomalies in $b \rightarrow c l \nu$ transitions and other observables
 - ► 3- σ -level tension with SM in $\mathscr{R}(D^{(\star)})$ for over a decade HFLAV
- Muon g-2 <u>PRL 131, 161802 (2023)</u>

4 June 2024

Leptoquarks at the LHC

QCD pair production

- Depends on M_{LO}
- Model-independent

Single production

- Depends on M_{LO} and λ^2
- Model-dependent

t-channel

- Depends on M_{LO} and λ^4
- Model-dependent

Resonant s-channel

- Depends on M_{LO} and λ^4
- $\gamma \rightarrow \tau \tau$ splitting

Strategy

- BDT trained for each LQ mass hypothesis
 - 11 high-level input variables with little correlation (e.g. invariant masses)
 - Cut on BDT score to maximize Punzi significance

Strategy

- BDT trained for each LQ mass hypothesis
 - 11 high-level input variables with little correlation (e.g. invariant masses)
 - Cut on BDT score to maximize Punzi significance
- Yield of dominant backgrounds corrected using data in CRs

LQ searches in CMS

95

Results

- Cut-and-count for each LQ mass
- No excess observed
- LQ masses below 1.8 / 2.5 (scalar / vector [κ=1]) excluded

LQ searches in CMS

Results

- Cut-and-count for each LQ mass
- No excess observed
- LQ masses below 1.8 / 2.5 (scalar / vector [κ=1]) excluded
- Limits also placed vs. $\beta = \mathscr{B}(LQ \rightarrow b\ell)$: $m_{LO} > 1.5$ TeV at $\beta = 0.5$

LQ searches in CMS

Strategy

- Assumes exclusive bτ couplings
- 2 hard τ leptons + varying number of hard (b-)jets
- No hard jet:
 - 3 categories in $m_{\tau\tau}$, fit $\chi = e^{\Delta \eta}$
 - Sensitive to t-channel process
- \geq 1 hard jet:
 - 2 categories in N_{b-jets} , fit $S_T^{MET} = 2$
 - Sensitive to all three processes

Arne Reimers (UZH)

arXiv:2308.07826 (acc. by JHEP)

- Consider different τ decay modes

[%]

tance

arXiv:2308.07826 (acc. by JHEP)

138 fb⁻¹ (13 TeV) $\underline{\tau_{h}} \overline{\tau_{h}}$, 0b Events / GeV $\label{eq:cms} \begin{array}{l} \textbf{CMS} \ \ \text{LQ}, 2000 \ \text{GeV}, \ \lambda = 2.5, \ \beta = 1, \ \kappa = 1 \\ \hline \textbf{Wector}, \ \sigma_{\text{fit}} = 48^{+25}_{-22} \ \text{fb} \end{array}$ Observed 10⁴ $\Box j \rightarrow \tau_h$ Signal regions after 10³ DY + jets tt + single t combined fit 10^{2} Diboson Other Bkg. unc. **10**⁻¹ • Vector LQ signal: 10⁻² 10^{-3} 2 TeV 10 Obs. / Bkg. $\lambda = 2.5$.5 All 3 processes 0.5 combined 2000 1500 2500 1000 500 S^{MET} [GeV] 138 fb⁻¹ (13 TeV) $e\tau_h + \mu \tau_h$, 0b Events / GeV 10⁵ **CMS** LQ, 2000 GeV, λ =2.5, β =1, κ =1 Observed Local disagreement - Vector, $\sigma_{fit} = 48^{+25}_{-22}$ fb $\Box j \rightarrow \tau_h$ 10⁴ 🔲 tīt + single t 10[°] DY + jets with SM Diboson Other Bkg. unc. • Most significant: 10⁻¹ • $e\tau_h + \mu\tau_h$, Ob 10⁻² 10^{-3} Not explained by 10^{-4} this LQ signal 1.5⊢ Obs. / Bkc . + + + 0.5 1500 500 2000 1000 2500 S^{MET} [GeV]

LQ searches in CMS

- Small couplings ($\lambda = 1$): signal dominated by pair production
 - Vector LQs excluded below 1.8 1.9 TeV
- Large couplings ($\lambda = 2.5$): high-mass signal dominated by nonresonant process
 - Local excess of 2.5 / 2.8σ (vector / scalar) at 2 TeV

Search for $q\tau \rightarrow LQ \rightarrow q\tau$

Strategy

- First search for τ lepton-induced LQ production
- Select high-p_T **τ** (e, μ, had.) and jet (b-tagged or untagged)
- Train BDTs to discriminate signal from and a some and a some a signal from a some W+jets and tt (e/μ channel) or **Events** jet $\rightarrow \tau_h$ mis-ID (hadronic channel)
 - Define categories with different signal purity
- Fit collinear mass ($p_{\rm T}^{\rm miss}$ assumed to come from τ decay)
- Normalization of W+b jet from CR data

PRL 132 (2024) 061801

Search for $q\tau \rightarrow LQ \rightarrow q\tau$

Results

- No significant excess observed
- Limits for bτ and qτ couplings

PRL 132 (2024) 061801

LQ searches in CMS

4 June 2024

Search for $q\tau \rightarrow LQ \rightarrow q\tau$

Results

- No significant excess observed
- Limits for bτ and qτ couplings
- Sensitivity to λ : limits on M_{LQ} vs. λ
 - bt cross section suppressed by b PDFs

PRL 132 (2024) 061801

LQ searches in CMS

4 June 2024

Conclusion

- Leptoquarks could explain B anomalies and muon g-2
- Search for LQ \rightarrow bµ pair production: strongest limits on LQ \rightarrow bµ to date
- Search for LQ \rightarrow bt: excess in $\ell \tau_h$ events with un-tagged jets
- Search for $q\tau \rightarrow LQ \rightarrow q\tau$: first search for τ lepton-induced LQ production

Additional material

- Dominant SM backgrounds:
 - $e\tau_h \& \mu \tau_h$: **tt**

•
$$\tau_h \tau_h$$
: **DY** \rightarrow **TT**

- Constrained by including control regions in simultaneous fit
 - tt in eµ region
 - **DY** \rightarrow **TT** in µµ region
- Useful for both experimental and theoretical uncertainties
- Excellent agreement after fit

arXiv:2308.07826 (acc. by JHEP)

LQ searches in CMS

4 June 2024

- Jets likely to be misidentified as τ_h
- Background with $j \rightarrow \tau_h$ fakes derived from data
- Invert τ_h identification: enriched in mis-IDed τ_h
- Transfer factor (TF) measured in dedicated control regions C&D vs. $\tau_h p_T$
- j $\rightarrow \tau_h$ probability depends on jet flavor
- Separate TFs measured for dominant processes:
 - ► tt
 - ► W + jets
 - QCD
- Application as weighted average

arXiv:2308.07826 (acc. by JHEP)

measure

LQ searches in CMS

