Searches with leptons in the final state @ CMS

Mattia Campana on behalf of CMS Collaboration

LHCp 2024, 4th June 2024, Boston

Introduction

- Direct searches for BSM physics remains a key part of the CMS physics program
 - an extensive searches for **NEW Physics** in which **leptons** provide clear signatures
- Many exotic BMS extension from few GeV up to TeV scale
 - Dark Photon & Extended Higgs sector (<u>10.1007/JHEP12(2023)070</u>)
 - New resonances (<u>arXiv:2402.11098</u>)

 - SUSY (recent results covered in <u>Carlos'</u>, <u>Victor's</u> and <u>Weijie's</u> talks)
- In this talk, the focus is on lately realised or published results
 - full Run-2 (2016-2018) up to 140/fb @ $\sqrt{s} = 13$ TeV

New result from for Run-3 @ \sqrt{s} = 13.6 TeV in <u>Anne's</u> and <u>Raphael's</u> talks • Mattia Campana

Low mass di-muon with scouting

Mattia Campana

Scouting

Traditional muon triggers *p_T* > 15 GeV

> Sacrifice event content to lower trigger thresholds (more physics possibilities)

Scouting muon triggers p_T > 3 GeV (*m*_{µµ}~ 200 MeV)

Low mass di-muon with scouting - Model

• Mainly targeting light mediators (short-lived)

- A challenging search with traditional trigger strategies
 - Low-pt objects, very high trigger rate with traditional triggers

Low mass di-muon with scouting - Scouting Trigger

Mattia Campana

Low mass di-muon with scouting - Results

• Limits are set for $m_{\mu\mu}$ in [1.1, 2.6] and [4.2, 7.9] GeV

Mattia Campana

Search for resonant signatures in the multilepton final state

Mattia Campana

W^+ W*+

arXiv:2402.11098 Sub. to PRD

- Search for resonant signature of ϕ boson in multilepton events
- ϕ is produced in association with ttbar pair or W/Z bosons
 - Scalar(S), pseudoscalar (PS) and Higgs-like (H) coupling scenarios are probed
- Complementary signatures:
 - o / 1 + b-jets,
 - low/high ST,
 - 3 or 4 leptons,
 - with/without MET

Xøfamily - Model

For S/ PS : $\sigma(W\phi/Z\phi) \sim \Lambda^{-2}$ $\sigma(tt\phi) \sim g_{s/ps}^2$ For Higgs-like: $\sigma(W\phi/Z\phi) \sim \sin^2\theta$ Λ effective coupling mass scale, θ mixing angle, g Yukawa coupling to top quark

- Resonant $X\phi \rightarrow ee/\mu\mu$
 - Dilepton mass is the final discriminator distribution
 - ϕ mass is probed in the mass range of 15-76 GeV and 106-366 GeV (Z mass window excluded)
- Semiseronant $X\phi \rightarrow \tau\tau$
 - Mass spectra are defined depending on the flavor of leptons used to reconstruct the ϕ mass
 - two τ_h leptons $\rightarrow M_{\tau\tau}$, light lepton $+ \tau_h \rightarrow M_{l\tau}$, two light lepton $\rightarrow M_{II}$
- W ϕ , Z ϕ and tt $\phi \rightarrow \tau \tau$ are the first direct constraints on an extension of the SM with light boson in leptonic decay channels and this mass range.

Dbs/Ex

Xøfamily - Results

Search for VBF Zprime to tautau (WW)

Mattia Campana

to tautau (WW) -q'

2500

Other result with τ lepton in the final state in <u>Carlos' talk</u>

- 3rd generation

$VBFZ'(WW/\tau\tau)$ -Model

- Search in the eµ, $e\tau_h$, $\mu\tau_h$, and $\tau_h\tau_h$ final states, with emphasis on 3rd generation
 - VBF topology -> require a pair of well separated & in the opposite plane ($|\Delta \eta_{ij}| > 4.2 \& |\eta_1 \eta_2| < 0$) jets with high mass ($m_{ii} > 500 \text{ GeV}$)
 - Boost to the Z' => p_T^{miss} from τ decay is collinear with Z'

$$m_{Z'}^{reco} = \sqrt{(E_{\ell 1} + E_{\ell 2} + p_T^{miss})^2 - (\vec{p}_{\ell 1} + \vec{p}_{\ell 2})^2} - (\vec{p}_{\ell 1} + \vec{p}_{\ell 2})^2 - (\vec{p}_{\ell 1} + \vec{p}_{\ell 2})^2 - (\vec{p}_{\ell 2} + \vec{p}_{\ell 2})^2 - (\vec{p}_{\ell$$

Background estimation: Non-prompt background estimated by loose-tight method from sidebands Prompt background estimated by MC and normalized from data

Mattia Campana

- - Z' couplings to 1st+2nd (g_l) and 3rd (g_h) generations
 - Coupling to $W(k_V)$
 - Z' mass $(m_{Z'})$

• Interpretation relies on the Sequential Standard Model and four independent parameters:

Other result with τ lepton in the final state in Carlos' talk

$Z' \rightarrow \tau \tau - Model$

- Search in the $e\tau_h$, $\mu\tau_h$, and $\tau_h\tau_h$ final states
 - Z' not boosted -> high $M_{Z'}$ two back to back τ

$$m_{Z'}^{reco} = \sqrt{(E_1^{\tau vis} + E_2^{\tau vis} + |p^{Z'miss}|)^2 - |p_1^{\tau vis} + |p_1^{\tau vis}|^2} + |p_1^{\tau vis} + |p_1^{\tau vis}|^2 - |p_1^{\tau vis} + |p_1^{\tau vis} + |p_1^{\tau vis} + |p_1^{\tau vis} + |p_1^{\tau vis}|^2 - |p_1^{\tau vis} + |p_1^{\tau vi$$

$$p^{Z'miss} = (-(\vec{p}_{1T}^{\tau vis} + \vec{p}_{2T}^{\tau vis})$$

Background estimation: DY,W,tt estimated by MC and normalized from data QCD estimated with ABCD method

$Z' \rightarrow \tau \tau - M_{Z'}$

10

		ττ) [pb]	10 ⁻ 10 ³
•	Interpretation relies on Sequential Standard Model-like interpretation:	σ × B(10 ² 10
	 Limits in mass range from 400 GeV to 4 TeV 		1
	 Most stringent limits for Z'->ττ 		10 ⁻¹
			10 ⁻²
			10 ⁻³

Mattia Campana

Z'-> \tau - Results

- leptons in the final state
 - Publications page and preliminary results <u>Recent Exotica Preliminary Results</u>.
- 3 New results with τ in final state
 - <u>CMS-PAS-EXO-21-015</u> & <u>CMS-PAS-EXO-21-016</u> this talk
 - <u>CMS-PAS-EXO-22-007</u> in <u>Carlos'</u> talk
- Rung is bringing: more data, new triggers, analyss techniques
 - Two results in <u>Anne's</u> and <u>Raphael's</u> talk
- Stay tuned for new results

• CMS performed many resonant and non-resonant searches beyond Standard Model with

Only some publications were discussed today. Full list of publications can be found Exotica

DY Z' $\rightarrow \tau \tau$ vs. VBF Z' Complementarity

- DY $Z' \rightarrow \tau^+ \tau^-$ search in events with no jets from vector boson fusion (VBF) processes ($|\Delta \eta(j_1, j_2)| > 3.8$ and $m(j_1, j_2) > 500$ GeV), ensuring mutually exclusive with $Z' \rightarrow \tau^+ \tau^-$ and $WW(e\mu)$ searches in VBF processes. Possible to investigate Z' in parameter space of $g_{Z'qq}$, $g_{Z'\tau\tau}$, $g_{z'ww}$
- When g_q is suppressed, existing bounds on m(Z') from DY searches are weak (below 400 GeV, see 1)
- VBF Z' process has similar or larger cross section compared to DY when g_q is small [2]

Mattia Campana

- VBF Z' provides the best sensitivity when g_q is less than 0.3 [2]
- Investigating Z' in parameter space of $g_{z'qq}$, $g_{z'\tau\tau}, g_{z'ww}$

DY Z' $\rightarrow \tau \tau$ vs. VBF Z' Complementarity - Results

