Searches with leptons in the final state @ CMS

Mattia Campana on behalf of CMS Collaboration

LHCp 2024, 4th June 2024, Boston
Introduction

• Direct searches for BSM physics remains a key part of the CMS physics program
 • an extensive searches for NEW Physics in which leptons provide clear signatures

• Many exotic BMS extension from few GeV up to TeV scale
 • Dark Photon & Extended Higgs sector (10.1007/JHEP12(2023)070)
 • New resonances (arXiv:2402.11098)
 • Heavy gauge bosons (CMS-PAS-EXO-21-015 & CMS-PAS-EXO-21-016)
 • SUSY (recent results covered in Carlos’, Victor’s and Weijie’s talks)
 • ...

• In this talk, the focus is on lately realised or published results
 • full Run-2 (2016-2018) up to 140/fb @ √s = 13 TeV
 • New result from for Run-3 @ √s = 13.6 TeV in Anne’s and Raphael’s talks
Low mass di-muon with scouting

Search for prompt low-mass dimuon resonances with scouting 10.1007/JHEP12(2023)070
Objects are reconstructed at trigger level to take trigger decision
- We can store the **trigger objects** and use them to do analysis
 - Physics objects saved (PF candidates, Jets, ...) reconstructed at HLT

Scouting

- Traditional muon triggers
 - $p_T > 15$ GeV

- Sacrifice event content to lower trigger thresholds (more physics possibilities)

- Scouting muon triggers
 - $p_T > 3$ GeV
 - $m_{\mu\mu} \sim 200$ MeV

Data flow for a typical 2018 data-taking scenario

- **Level 1 Trigger**
 - Coarse reconstruction, limited detector systems
 - ~100 kHz

- **High Level Trigger**
 - Full detector information and online resolution

- **Standard data stream**
 - ~1 kHz, ~1000 MB/s

- **Parking data stream**
 - ~3 kHz, ~2000 MB/s

- **Scouting data stream**
 - ~5 kHz, ~40 MB/s

- **Prompt offline reconstruction**
- **Delayed offline reconstruction**
- **No offline reconstruction**

Scouting Paper

Mattia Campana
Low mass di-muon with scouting - Model

- Mainly targeting light mediators (short-lived)

- A challenging search with traditional trigger strategies
 - Low-pt objects, very high trigger rate with traditional triggers
Low mass di-muon with scouting - Scouting Trigger

Mainly targeting light mediators (short-lived)

A challenging search with traditional trigger strategies

Low-pt objects, very high trigger rate with traditional triggers

CMS Preliminary

96.6 fb^{-1} (13 TeV)

Run 2 dimuon events collected in the standard and scouting datasets

- Standard single and double muon triggers
- Scouting double muon triggers

60 fb^{-1} (13 TeV, 2018)

Scouting Dimuon Events

\(p_T(\ell) > 3 \text{ GeV}, \gamma_T(\ell) < 2.4, \text{ opposite sign} \)

L1-Trigger Selection Requirements
Limits are set for $m_{\mu\mu}$ in [1.1, 2.6] and [4.2, 7.9] GeV
Search for resonant signatures in the multilepton final state

X\phi family

arXiv:2402.11098
Sub. to PRD

Mattia Campana
Xϕ family - Model

- Search for resonant signature of ϕ boson in multilepton events
- ϕ is produced in association with ttbar pair or W/Z bosons
- Scalar(S), pseudoscalar (PS) and Higgs-like (H) coupling scenarios are probed

Complementary signatures:
- 0 / 1+ b-jets,
- low/high ST,
- 3 or 4 leptons,
- with/without MET

\[
\begin{align*}
\text{For S/ PS : } & \sigma(Wϕ/Zϕ) \sim \Lambda^{-2} \\
\sigma(ttϕ) & \sim g_{s/ps}^2 \\
\text{For Higgs-like: } & \sigma(Wϕ/Zϕ) \sim \sin^2 \theta \\
\Lambda & \text{ effective coupling mass scale, } \\
\theta & \text{ mixing angle, } g \text{ Yukawa coupling to top quark}
\end{align*}
\]
X\phi family - Results

- **Resonant \(X\phi \rightarrow ee/\mu\mu \)**
 - Dilepton mass is the final discriminator distribution
 - \(\phi \) mass is probed in the mass range of 15-76 GeV and 106-366 GeV (Z mass window excluded)

- **Semiseronant \(X\phi \rightarrow \tau\tau \)**
 - Mass spectra are defined depending on the flavor of leptons used to reconstruct the \(\phi \) mass
 - two \(\tau_l \) leptons \(\rightarrow M_{\tau\tau} \), light lepton + \(\tau_l \) \(\rightarrow M_{ll} \), two light lepton \(\rightarrow M_{ll} \)
 - \(W\phi, Z\phi \) and \(tt\phi \rightarrow \tau\tau \) are the first direct constraints on an extension of the SM with light boson in leptonic decay channels and this mass range.

Mattia Campana
Search for VBF Zprime to tau tau (WW)

Other result with τ lepton in the final state in Carlos’ talk
VBF Z’ (WW/ττ) - Model

- Search in the $e\mu$, $e\tau$, $\mu\tau$, and $\tau\tau$ final states, with emphasis on 3rd generation
- VBF topology -> require a pair of well separated & in the opposite plane ($|\Delta\eta_{jj}|>4.2$ & $|\eta_1\eta_2|<0$) jets with high mass ($m_{jj}>500$ GeV)

\[m_{\text{recog} Z'} = (E_{\ell_1} + E_{\ell_2} + p_{\text{miss}} T)^2 - (\vec{p}_{\ell_1} + \vec{p}_{\ell_2} + \vec{p}_{\text{miss}} T)^2 \]
VBF Z' (WW/$\tau\tau$) - $M_{Z'}$

- Search in the $e\mu$, $e\tau_h$, $\mu\tau_h$, and $\tau_h\tau_h$ final states, with emphasis on 3rd generation
- VBF topology -> require a pair of well separated & in the opposite plane ($|\Delta\eta_{jj}|>4.2$ & $|\eta_1\eta_2|<0$) jets with high mass ($m_{jj}>500$ GeV)
- Boost to the Z' => p_T^{miss} from τ decay is collinear with Z'

\[
m_{Z'}^{\text{reco}} = \sqrt{(E_{\ell 1} + E_{\ell 2} + p_T^{\text{miss}})^2 - (\vec{p}_{\ell 1} + \vec{p}_{\ell 2} + \vec{p}_T^{\text{miss}})^2}
\]

Background estimation:
Non-prompt background estimated by loose-tight method from sidebands
Prompt background estimated by MC and normalized from data
VBF Z' (WW/$\tau\tau$) - Results

- Interpretation relies on the Sequential Standard Model and four independent parameters:
 - Z' couplings to 1st+2nd (g_l) and 3rd (g_h) generations
 - Coupling to W (k_V)
 - Z' mass ($m_{Z'}$)
- First interpretations of VBF produced Z' at the LHC
Search for Heavy Neutral Resonances Decaying to Tau Lepton Pairs

Other result with τ lepton in the final state in Carlos' talk
Z'→ττ - Model

- Search in the $e\tau_h$, $\mu\tau_h$, and $\tau_h\tau_h$ final states
 - Z' not boosted -> high $M_{Z'}$ two back to back τ

Background estimation:
- DY,W,tt estimated by MC and normalized from data in CR
- QCD estimated with ABCD method
$Z'\rightarrow\tau\tau - M_{Z'}$

- Search in the $e\tau_h, \mu\tau_h, \text{and } \tau_h\tau_h$ final states
- Z' not boosted \rightarrow high $M_{Z'}$ two back to back τ

$$m_{Z'}^{\text{reco}} = \sqrt{(E^\text{vis}_1 + E^\text{vis}_2 + |p^{Z'\text{miss}}|)^2 - |p_1^{\text{vis}} + p_2^{\text{vis}} + p^{Z'\text{miss}}|^2}$$

$$p^{Z'\text{miss}} = (- (\vec{p}_{1T}^{\text{vis}} + \vec{p}_{2T}^{\text{vis}}), 0)$$

Background estimation:
- DY, W, tt estimated by MC and normalized from data
- QCD estimated with ABCD method
Z'→ττ - Results

- Interpretation relies on Sequential Standard Model-like interpretation:
 - Limits in mass range from 400 GeV to 4 TeV
 - Most stringent limits for Z'→ττ
Summary

- CMS performed many resonant and non-resonant searches beyond Standard Model with leptons in the final state
 - Only some publications were discussed today. Full list of publications can be found Exotica Publications page and preliminary results Recent Exotica Preliminary Results.
 - 3 New results with τ in final state
 - CMS-PAS-EXO-21-015 & CMS-PAS-EXO-21-016 this talk
 - CMS-PAS-EXO-22-007 in Carlos’ talk
 - Run3 is bringing: more data, new triggers, analsys techniques
 - Two results in Anne’s and Raphael’s talk
 - Stay tuned for new results
Backup
DY $Z' \rightarrow \tau \tau$ vs. VBF Z' Complementarity

- **DY $Z' \rightarrow \tau^+ \tau^-$** search in events with no jets from vector boson fusion (VBF) processes ($| \Delta \eta(j_1, j_2) | > 3.8$ and $m(j_1, j_2) > 500$ GeV), ensuring mutually exclusive with $Z' \rightarrow \tau^+ \tau^-$ and $WW(e\mu)$ searches in VBF processes. Possible to investigate Z' in parameter space of $g_{Z'qq}, g_{Z'\tau\tau}, g_{Z'ww}$

- When g_q is suppressed, existing bounds on $m(Z')$ from DY searches are weak (below 400 GeV, see [1])

- VBF Z' process has similar or larger cross section compared to DY when g_q is small [2]
VBF Z' provides the best sensitivity when g_q is less than 0.3 \cite{2}.

Investigating Z' in parameter space of $g_{z'qq}$, $g_{z'\tau\tau}$, $g_{z'ww}$.