

The 12th Large Hadron Collider Physics Annual Conference June 3-7, 2024 @ Northeastern University http://lhcp2024.cos.northeastern.edu

Searches for VLQ in ATLAS

Vallary Bhopatkar

Oklahoma State University On Behalf of ATLAS Collaboration

6 June 2024

Outline

- Vector-like Quarks
- Motivation
- Results using Full Run 2 Data
 - ➢ VLQ pair production search in the Wb+X final state (TT→Wb and Wb, Ht, Zt, BB→Wt and Wt, Hb, Zb)
 - > Search for E_T^{miss} plus boosted single-top-quark (T \rightarrow Zt)
 - Search for pair-produced VLQ in Wq + X final State (QQ \rightarrow Wq +X)
- Summary

Vector-like Quarks

- "Quarks" : Color-triplets, spin 1/2 particles
- "Vector-like": Left and right chirality have the same weak isospin
- Only left-handed charged currents for SM quarks $~~(ar{q}\gamma^{\mu}(1-\gamma^5)q')$
- BOTH left- and right-handed charged currents for VLQs $~~(ar{Q}\gamma^{\mu}Q')$
- Physically, this means:
 - Chiral fermions can only get mass through coupling to the Higgs boson
 - VLQs fermions can have mass without coupling to the Higgs boson
 - Important: This avoids strong constraints from Higgs measurements!
- Couple to SM through mixing with SM quarks

Motivation

- Unresolved phenomena present within the SM despite its many successes i.e. hierarchy problem, dark matter, strong CP problem, etc.
 - The hierarchy problem is one which may be resolved through the addition of extra particles known as vector-like quarks (VLQs)
- Hierarchy problem in a nutshell: loop diagram contributions from top quark causes quadratic divergences in the Higgs boson mass => unnatural

$$m_H^2 = m_0^2 + \delta m_H^2$$

where

$$\delta m_H^2 \approx -\frac{3}{8\pi^2} \lambda_t^2 \Lambda^2 + \frac{9}{64\pi^2} g^2 \Lambda^2 + \frac{1}{16\pi^2} \lambda^2 \Lambda^2 = -\delta_{top} m_H^2 + \delta_V m_H^2 + \delta_H m_H^2$$

with $\delta_{top} m_H^2 \gg m_H^2$ [1]
$$H_{-y_t} = M_{-y_t} + H_{-y_t} +$$

• Having vector-like quarks could naturally cancel the divergent top correction!

VLQ pair production search in the Wb+X final state

VLQ pair production search in the Wb+X final state

Phys. Lett. B 854 (2024) 138743

- Optimised for the TT→WbWb channel with one W boson decaying leptonically and the other hadronically.
- Wb has the largest BR for VLTs
- High-pT hadronically decaying W bosons are tagged as a single large-radius (large-R) jets.
- T candidates are reconstructed such that the mass difference between the leptonically and hadronically
- Decaying T candidates is minimised. The mass is the final discriminant variable

VLQ pair production search in the Wb+X final state

Phys. Lett. B 854 (2024) 138743

Signal Region 2

Fit Results m_{VLQ} = 1400 GeV

- Top modelling is reweighted
- tt

 and W+jets dedicated CR and final corrections from additional high CRs at high DeltaM
- Multijets are estimated by Matrix-Method.

Signal Region 1

VLQ Searches in ATLAS @LHCP24 VBhopatkar

Interpretation: Limits

Phys. Lett. B 854 (2024) 138743

- Limits are set on
 > BR(T→Wb) = 1
 > SU(2) Singlet T
- Limits between BRs are also checked.
- Though this analysis is optimized for TT→Wb+X, BB→Wt+X is also considered.
- The most stringent limits are set for the scenario BR(T→Wb) = 1

JHEP 05 (2024) 263

- A search for new particle in a final state with boosted top quark and MET is performed
 - The results are interpreted in using simplified model for Dark Matter particle production and the production of single vector-like quark T
- The use of a Deep Neural Network (DNN) based identification of large-R jet originated from hadronically decaying top
- Signal events are separated efficiently from background using extreme gradient-Boosted (XGBOOST) Decision Tree (BDT)

BDT score used as a final discriminant variable

JHEP 05 (2024) 263

- No significant excess above SM expectation is found
 - Results interpretation=> expected and observed upper limit on the signal cross-section as function of model parameters
- Due to improved and refined object reconstruction and used of XGBoost algorithm the limits improved significantly compared to previous results (~400 GeV)

VLQ pair production search in the Wq+X final state

VLQ pair production search in the Wq+X final state

• Full Run 2 analysis searching for Vector-Like Quarks decaying to Wq+X

$$pp \rightarrow Q\bar{Q} \rightarrow Wq + X$$

where q is a light quark

- Complements searches where it is assumed that *q* is a third-generation quark
- Previous analysis performed during Run 1
- Require at least one lepton $(\ell = e/\mu)$ from leptonic W decay

 $Q \rightarrow Wq \rightarrow \ell vq$

- Optimized for a large-R jet (q' q'') from hadronic W decay $Q \rightarrow Wq \rightarrow (q' q'') q$
- Sensitive to $Q \rightarrow Z/Hq \rightarrow (q'q'')q$

Phys. Rev. D 92, 112007 (2015)

Event Selection and VLQ Reconstruction

- Select only events that allow the possibility of reconstructing the pair - produced VLQ candidates
- Reconstruct neutrino
 - Calculate p_Z^{ν}
 - Use *W* boson mass as a constraint
- Reconstruct *W* bosons
 - Leptonic *W*: lepton + reconstructed neutrino
 - Hadronic *W*: leading *W*-tagged large-R jet
 - No W-tag \Rightarrow large-R jet mass closest to W mass
- Reconstruct VLQ candidates
 - Use (at most) the 3-leading small-R jets to reconstruct the VLQ \Rightarrow Minimize ΔM_{VLQ}

Variable	Cut	Purpose			
Preselection					
N _{large-R jets}	≥ 1	Hadronic decaying W candidate			
$p_{\rm T}^{\rm large-R jet}$	$\geq 200 \text{ GeV}$	Required for the W-tagger			
N _{small-R jets}	≥ 2	Quarks from VLQ decay			
$p_{\rm T}$ small- ${\rm \ddot{R}}$ jet0	$\geq 200 \text{ GeV}$	Boosted objects			
$p_{\rm T}$ lep	$\geq 60 \text{ GeV}$	Leptonic VLQ decay			
MET	$\geq 250 \text{ GeV}$	Neutrino from $W \rightarrow \ell \nu$ decay			
ΔR (small- <i>R</i> jet, large- <i>R</i> jet)	> 1.0	Overlap removal			

Background Modeling

- Backgrounds are:
 - ➤ W+jets
 - $\succ t\overline{t}$
 - > Single top
 - > Multijet
 - Data-driven normalization correction

• Dominant bkgs in

decreasing order

Data-driven shape

correction

- > Other bkgs
 - (diboson, Z + jets, ttV)
 - Estimated from MC
- 3 Reweighting Regions (RwR), 3
 Validation Region (VR) and 2 Signal Regions are defined

- Derive correction on S_T in RwRs
 - Known mis-modelling in MC
 - Shape correction: fit S_T distribution to $P_0 + e^{P_1 x}$, where $x = S_T$
 - Normalization correction: scale MC to data over S_T distribution
 - Iterative procedure

 $c = \frac{\text{data-other MC}}{\text{MC to correct}}$

Step	MC being Corrected	Other Corrections Used
1	Multijet	-
2	$t\bar{t}$ and single top	(1)
3	W + jets	(1,2)
4	Multijet	(2, 3)
5	$t\bar{t}$ and single top	(3, 4)
6	W + jets	(4, 5)

Background Modelling

- Derived and applied corrections in Reweighting Regions (RwR) using S_T Variable
- Validated the correction in the Validation Regions using reconstructed m_{lep}^{VLQ}

arXiv:2405.19862 Submitted to PRD

Fit Results $m_{VLQ} = 1400 \text{ GeV}$

Signal Region 1

Signal Region 2

arXiv:2405.19862 Submitted to PRD

$\mathcal{BR}(\boldsymbol{Q} \to \boldsymbol{W}\boldsymbol{q}) = \mathbf{1}$

SU(2) Singlet Model

With increased center-of-mass energy and integrated luminosity, as well as improved analysis tools, We have more than doubled the excluded mass limit (1530 GeV) by using the full Run 2 dataset for $\mathcal{B}(Q \to Wq) = 1$ in contrast with the Run 1 result (~700 GeV)

Limits for Single VLQs

- arXiv:2405.19862 Submitted to PRD
- Lower limits on the VLQ mass for various branching ratio (BR) configurations at 95% CL

Expected

Observed

Summary

- Latest summary of the ATLAS Run-2 results for Vector-like Quarks are presented
 - ➢ Pair-production and single production searches are performed
 - Limits are set on VLQ masses and couplings for singlet
 - Scan over branching ratios of VLQs to other possible decay channels also considered
- No significant excess has been observed and hence each of the analyses set the strongest limit
- Full list of recent ATLAS results can be found <u>here</u>

Stay Tuned for the upcoming Run-3 results!!

Backup

REGIONS DEFINITIONS

CRs for ttbar and for V+jets.

TCR

TVR1bLPhi

VCR

- Independent of MVA strategy.
- Common for the 3 models.
- The XGB scores provide higher sensitivity in SRs.
 - SRs defined for XGB>0.5 for each trained BDT.

TVR2bHPhi

SR1b

SROb

SR1b 1f

SROb 1f

XGB > 0.5

XGB > 0.5

 $\Delta \phi_{min}(j, E_T^{miss})$

SR0b Scalar, SR1b Scalar.

VVR

1.0

- SR0b Vector, SR1b Vector.
- SR0b1f VLQ, SR1b1f VLQ.
 (Additional fwd jet required for VLQ SRs).

TVR1bHPhi XGB < 0.5

XGB < 0.5

0

0.2

N_{b-tagged jets}

	$N_{b-{ m tagged jets}}$	$\Delta \phi_{ m min}(j,E_{ m T}^{ m miss})$	XGBOOST score	$N_{ m forward\ jets}$
TCR	≥ 2	$\in [0.2, 1]$		
TVR1bLPhi	1	$\in [0.2, 1]$		
TVR1bHPhi (1f)	1	≥ 1	< 0.5	$- (\geq 1)$
TVR2bHPhi	≥ 2	≥ 1	—	
VCR	0	$\in [0.2,1]$	_	
VVR (1f)	0	≥ 1	< 0.5	$- (\geq 1)$
$\overline{\text{SR0b}(1f)}$	0	≥ 1	≥ 0.5	— (≥1)
SR1b (1f)	1	≥ 1	≥ 0.5	$- (\geq 1)$

Variable	Description	Scalar	Vector	VLQ
		DM mediator	DM mediator	
$E_{\mathrm{T}}^{\mathrm{miss}}$	Missing transverse momentum	\checkmark	\checkmark	\checkmark
Ω	$E_{\rm T}^{\rm miss}$ and large- R jet $p_{\rm T}$ balance: $\frac{E_{\rm T}^{\rm miss}-p_{\rm T}(J)}{E_{\rm T}^{\rm miss}+p_{\rm T}(J)}$	\checkmark	\checkmark	\checkmark
$N_{ m jets}$	Small- R jet multiplicity	\checkmark	\checkmark	\checkmark
$\Delta R_{ m max}$	Maximum ΔR between two small- R jets	\checkmark	\checkmark	\checkmark
$m_{\mathrm{T,min}}(E_{\mathrm{T}}^{\mathrm{miss}}, b$ -tagged jet)	Transverse mass of $E_{\rm T}^{\rm miss}$ and the closest $b\text{-tagged jet}$	\checkmark	\checkmark	\checkmark
$m_{ m top-tagged}$ jet	Mass of the large- R top-tagged jet	\checkmark		\checkmark
$\Delta p_{ m T} \; (J, { m jets})$	Scalar difference of large- R jet $p_{\rm T}$ and the sum of $p_{\rm T}$ of all small- R jets.	\checkmark	\checkmark	
H_{T}	Sum of all small- R jet $p_{\rm T}$		\checkmark	\checkmark
$H_{ m T}/E_{ m T}^{ m miss}$	Ratio of $H_{ m T}$ and $E_{ m T}^{ m miss}$		\checkmark	\checkmark
$\Delta E(E_{ m T}^{ m miss},J)$	Energy difference between $E_{\mathrm{T}}^{\mathrm{miss}}$ and the large- R jet		\checkmark	\checkmark
$\Delta \phi(E_{ m T}^{ m miss},J)$	Angular distance in the transverse plane between $E_{\mathrm{T}}^{\mathrm{miss}}$ and large- R jet		\checkmark	\checkmark
$p_{ m T}({ m J})$	Large- R jet $p_{\rm T}$			\checkmark
$m_{ m T}(E_{ m T}^{ m miss},J)$	Transverse mass of the $E_{\rm T}^{\rm miss}$ and large- $\!R$ jet			\checkmark
$\Delta \phi(b$ -tagged jet, $J)$	Angular distance in the transverse plane between the large- R jet and the leading <i>b</i> -tagged jet			\checkmark