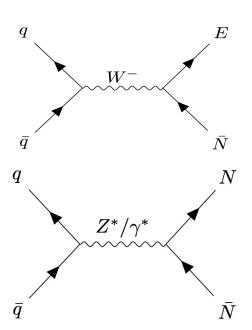


Searches for Vector Like Leptons in CMS

LHCP2024: 12th Edition of the Large Hadron Collider Physics Conference

Charis-Kleio Koraka

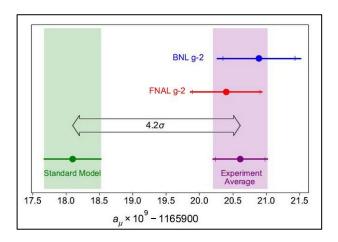

on behalf of the CMS collaboration

June 3rd - 7th 2024

Vector-Like Leptons

- SM incomplete → DM, hierarchy problem, neutrino oscillations ...
- VLLs → Color-singlet counterparts of VLQs
 - Non-chiral 0
 - Can be SU(2) doublets (E,N) or singlets (E)
 - Pair produced (pp \rightarrow EE/NN) or produced in association (pp→ EN)

Vector-Like Leptons



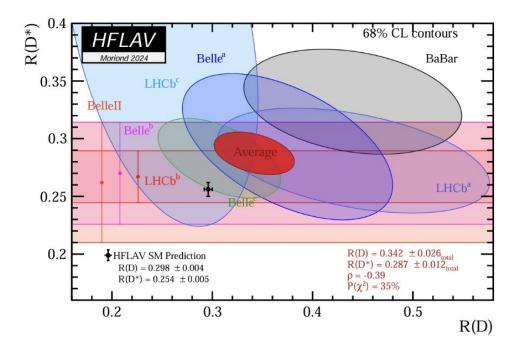
Are predicted by many SM extensions

- Supersymmetric models
- GUTs
- Extra dimensional models

In BSM models VLLs:

- Provide dark matter candidates
- Account for mass hierarchy via mixing with SM fermions
- Explain tensions in muon g-2 measurements

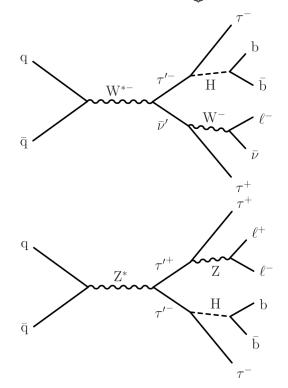
Motivation from B-physics anomalies



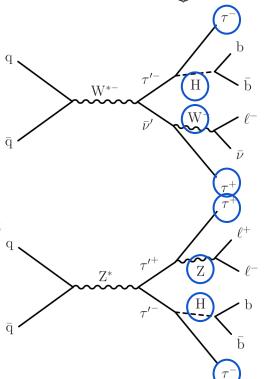
• Recent measurements show $\sim 3\sigma$ deviation of $R(D^{(*)})$ from SM expectation

$$R(D^{(*)}) = \mathcal{B}_{B \to D^{(*)} \tau \nu} / \mathcal{B}_{B \to D^{(*)} \ell \nu}$$

Strong motivation for VLLs searches@ CMS



- Model-independent multi-lepton analysis performed with full Run-2 data
- Several BSM physics scenarios are probed that cover different corners of the multilepton phase-space:
 - \circ Minimal SM extension where VLLs couple to the SM au



- Minimal SM extension where VLLs couple to the SM τ
 - τ enriched final states
 - Signal masses from 100 GeV–1200 GeV
- Two scenarios considered:
 - Doublet scenario τ' (charged) & v' (neutral) VLLs
 - Mass-degenerate
 - Pair & associated production
 - Singlet scenario only charged τ' VLL

- Two scenarios considered:
 - <u>Doublet</u> scenario τ' (charged) & v' (neutral) VLLs
 - Mass-degenerate
 - Pair & associated production
 - Singlet scenario only charged τ' VLL
- Assumed to mix through Yukawa interactions with SM leptons
 - Decays are to SM boson-lepton pairs
 - Decay rates governed by m_{_},

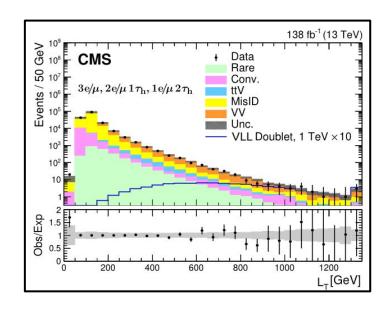
- Final states are categorized in seven orthogonal channels based on the number of light charged leptons and τ_h
- Categories are further split in 0, 1 and 2 or more b-jets categories (statistics permitting)

Trilepton channels	Quadlepton channels*
 3L: 3 light leptons, 0 had. taus 2L1T: 2 light leptons, 1 had. tau 1L2T: 1 light lepton, 2 had. taus 	 4L: 4 light leptons, 0 had. tau 3L1T: 3 light leptons, 1 had. tau 2L2T: 2 light lepton, 2 had. taus 1L3T: 2 light lepton, 2 had. taus *No veto on additional leptons only lead. four objects are considered

- Final states are categorized in seven orthogonal channels based on the number of light charged leptons and τ_h
- Categories are further split in 0, 1 and 2 or more b-jets categories (statistics permitting)

Trilepton channels	Quadlepton channels*
 3L: 3 light leptons, 0 had. taus 2L1T: 2 light leptons, 1 had. tau 1L2T: 1 light lepton, 2 had. taus 	 4L: 4 light 3L1T: 3 lig 2L2T: 2 lig 1L3T: 2 lig Dedicated CRs defined for background estimation
* No veto on additional leptons → only lead. four objects are considered	

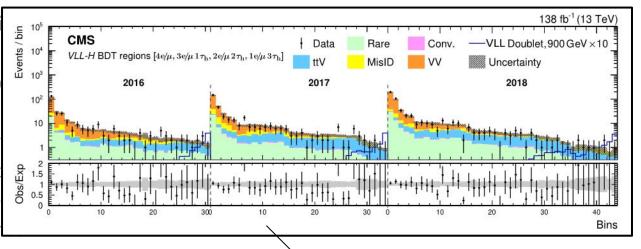
CMS-EXO-21-002 [arXiv:2202.08676]



Two approaches utilized for defining the observables:

• Model-Independent approach:

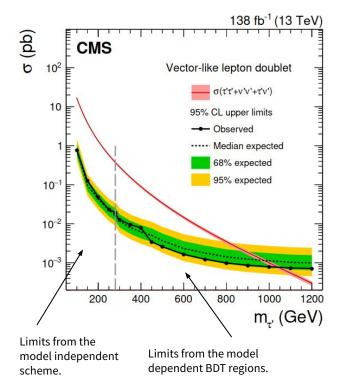
- Defining signal regions (SRs) based on kinematic properties.
- Utilizing observables such as L_T (scalar sum of all charged leptons in the channel) to probe for VLL signal

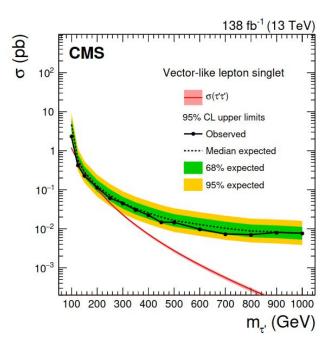

CMS-EXO-21-002 [arXiv:2202.08676]

Two approaches unobservables:

- Model-Independent ap
 - Defining signal kinematic proper
 - Otilizing observation of all charged le probe for VLL sign

Model-Dependent approach:


- Signal specific BDT training for range of masses
- Increase sensitivity for high signal masses


Bins correspond to variable-width regions of the BDT discriminant output defined for each of the combined three-lepton and four-lepton channels

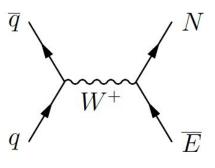
CMS-EXO-21-002 [arXiv:2202.08676]

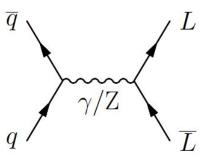
Upper observed mass limits:

Doublet scenario → 1045 GeV

Singlet scenario →125-170 GeV

CMS-B2G-21-004 [arXiv:2208.09700v2]

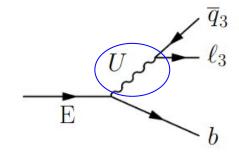


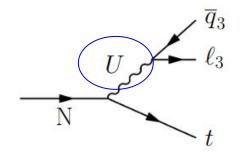


Performed in the context of the 4321 model [arXiv:1708.08450]

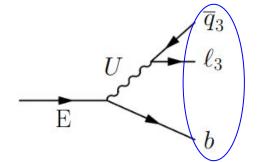
$$SU(4)\times SU(3)'\times SU(2)_L\times U(1)'$$

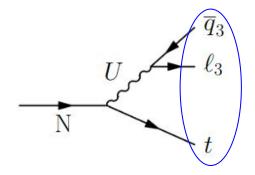
- UV complete extension of SM gauge group
- VLLs produced through Electroweak interactions
 - Doublet of charged (E) and neutral (N) VLL
 - E, N mass degenerate




CMS-B2G-21-004 [arXiv:2208.09700v2]

- Leptoquark predicted to exist as source of LFV explaining the B anomalies :
 - $U(3,1,2/3) \rightarrow massive, spin-1$
 - The R(D)^(*) anomaly requires a leptoquark mass close to the TeV scale, in 4321 benchmark $M_U = 1.6$ TeV.
 - Search results in the 4321 model context also hold for other models with a Pati–Salam leptoquark




CMS-B2G-21-004 [arXiv:2208.09700v2]

- Decays are expected to be almost entirely to third-generation fermions
 - Branching fraction suppressed by at least an order of magnitude for 2nd and 1st generations

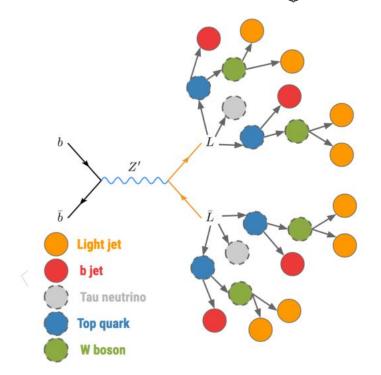
CMS-B2G-21-004 [arXiv:2208.09700v2]

• Final states highly flavor asymmetrical

- At least two 3rd generation fermions expected in every VLL decay
- All final states contain at least 4-b
 jets & a varying number of
 hadronic τ, ν_τ, and light jets from
 top decays

tau multiplicity	production + decay mode	final state
0 τ	$ ext{EE} ightarrow ext{b}(ext{t} u_{ au}) ext{b}(ext{t} u_{ au})$	$4b + 4j + 2\nu_{\tau}$
	$EN \rightarrow b(t\nu_{\tau})t(t\nu_{\tau})$	$4b + 6j + 2\nu_{\tau}$
	$NN ightarrow t(t u_{ au})t(t u_{ au})$	$4b + 8j + 2\nu_{\tau}$
1 τ	$ ext{EE} ightarrow ext{b}(ext{b} au) ext{b}(ext{t} u_{ au})$	$4b+2j+\tau+\nu_{\tau}$
	$EN \rightarrow b(t\nu_{\tau})t(b\tau)$	$4b+4j+\tau+\nu_{\tau}$
	$EN o b(b au)t(t u_{ au})$	$4b+4j+ au+ u_{ au}$
	$NN o t(b au)t(t u_{ au})$	$4b+6j+\tau+\nu_{\tau}$
2 τ	$EE \rightarrow b(b\tau)b(b\tau)$	$4b + 2\tau$
	$EN \rightarrow b(b\tau)t(b\tau)$	$4b + 2j + 2\tau$
	$NN \rightarrow t(b\tau)t(b\tau)$	$4b+4j+2\tau$

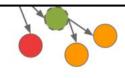
In parenthesis:


Originating from leptoquark decay

CMS-B2G-21-004 [arXiv:2208.09700v2]

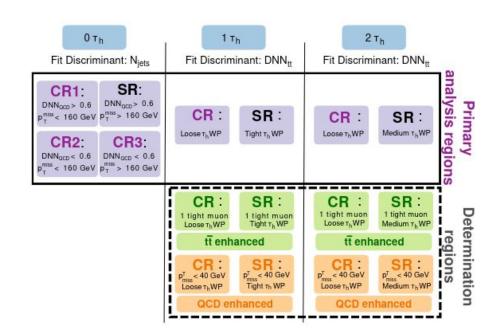
- ML based strategy to construct observable for signal vs background discrimination
- Use of ABCNet, a graph neural network
 [https://arxiv.org/abs/2001.05311] approach
 - Select up to 10 objects per event
 - Jets & hadronic τ's
 - Constructed using distances in η-φ space to connect jets using k-nearest neighbors (K = 8)

CMS-B2G-21-004 [arXiv:2208.09700v2]



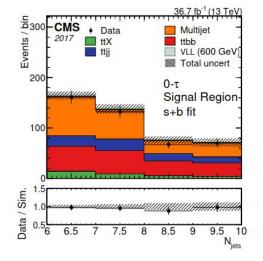
- ML based strategy to construct observable
- Two classifiers are trained with same underlying architecture
 - Signal vs tt (>0-τ_h events)
 - \circ Signal vs QCD (0- τ_h events)
- Several kinematical features are considered

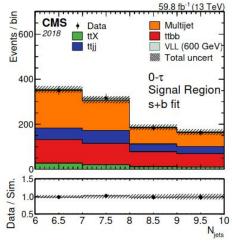
Variable	Description	
η	Pseudorapidity	
ϕ	Azimuthal angle	
$\log(\frac{p_{\mathrm{T}}}{\mathrm{GeV}})$	Logarithm of the p_T	
$\log(\frac{m}{\text{GeV}})$	Logarithm of the mass	
Q	Charge	
DEEPJET score	b tagging discriminant	


CMS-B2G-21-004 [arXiv:2208.09700v2]

Different search and control regions defined based on hadronic τ multiplicity:

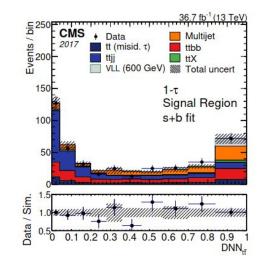
- $\tau_h = 0$, QCD dominated
- $\tau_h = 1$, fake τ and tt dominated
- $\tau_h = 2$, fake τ and tt dominated

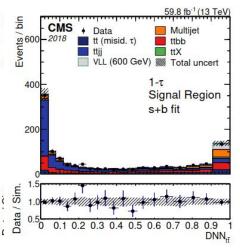

CMS-B2G-21-004 [arXiv:2208.09700v2]



Different search and control regions defined based on hadronic τ multiplicity:

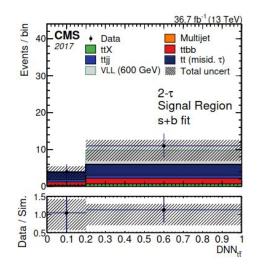
- N-jets final discriminant
 - QCD estimated from data
- DNN₊₊ final discriminant
 - \circ Fake τ_h estimated from data
- DNN₊₊ final discriminant
 - \circ Fake τ_h estimated from data

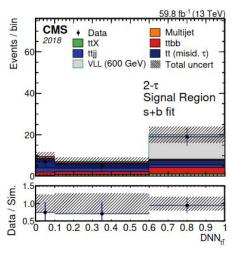

CMS-B2G-21-004 [arXiv:2208.09700v2]



Different search and control regions defined based on hadronic τ multiplicity:

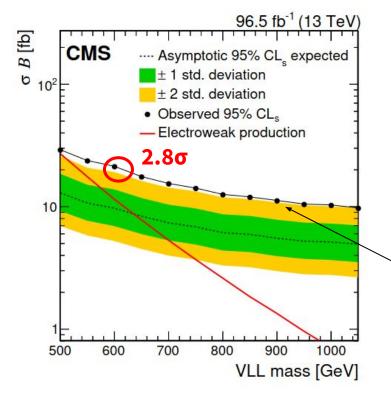
- N-jets final discriminant
 - QCD estimated from data
- DNN,, final discriminant
 - \circ Fake τ_h estimated from data
- DNN₊₊ final discriminant
 - \circ Fake τ_h estimated from data


CMS-B2G-21-004 [arXiv:2208.09700v2]

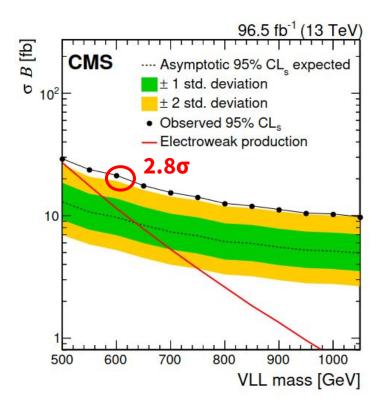


 Different search and control regions defined based on hadronic **T multiplicity:**

- N-jets final discriminant
 - QCD estimated from data
- DNN₊₊ final discriminant
 - \circ Fake τ_h estimated from data
- DNN,, final discriminant
 - \circ Fake τ_h estimated from data



CMS-B2G-21-004 [arXiv:2208.09700v2]

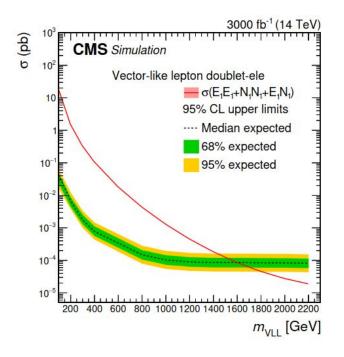

- Mild excess observed in data across
 VLL mass spectrum :
 - ~2.8 σ @ 600 GeV VLL mass

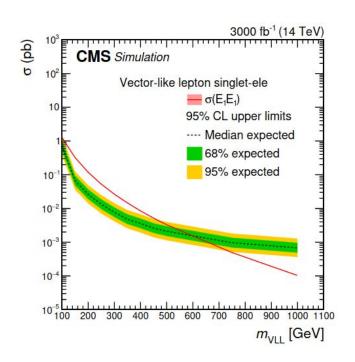
Complicated final state → GNN observable has high discriminating power but low sensitivity to different mass hypotheses.

CMS-B2G-21-004 [arXiv:2208.09700v2]

- Mild excess observed in data acrossVLL mass spectrum :
 - ~2.8 σ @ 600 GeV VLL mass
- Ongoing CMS analyses studying final states with 1st and 2nd generation leptons to further scrutinise result

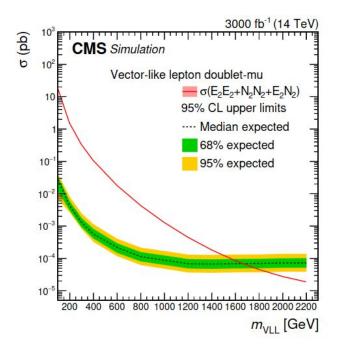
Review of VLQ/VLL/HNL searches [arXiv:2405.17605]

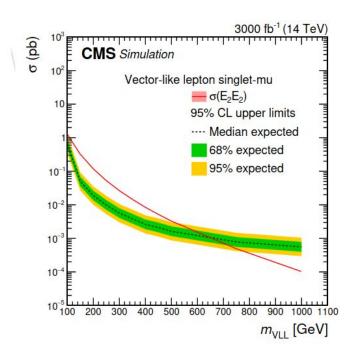




- Searches for VLL coupling to τ explored by CMS:
 - No search for VLLs coupling to electrons and muons in Run-1 or Run-2.
- Minimal VLL model is considered to extrapolate sensitivity to HL-LHC
 - Final states mix through Yukawa interactions with same generation SM leptons, decay into SM boson-lepton pairs
 - Singlet & doublet scenarios considered
- Similar strategy as described in [CMS-EXO-21-002]
 - Physics observable L_T+p_T^{miss} in SR of all seven channels used to project sensitivity for these models
- Experimental uncertainties for signal and background yields were taken into consideration following the Yellow Report recommendations [CYRM-2019-007.585]

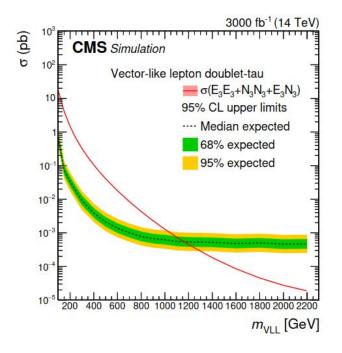
Review of VLQ/VLL/HNL searches [arXiv:2405.17605]

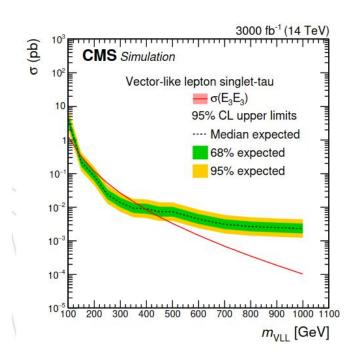

VLL-e expected exclusion limits:


Doublet scenario → 1600 GeV

Singlet scenario →600 GeV

Review of VLQ/VLL/HNL searches [arXiv:2405.17605]


VLL-mu expected exclusion limits:


Doublet scenario → 1630 GeV

Singlet scenario →640 GeV

Review of VLQ/VLL/HNL searches [arXiv:2405.17605]

VLL-τ expected exclusion limits:

Doublet scenario → 1150 GeV

Singlet scenario →150-395 GeV

Summary & Outlook

- CMS has performed searches for Vector-like leptons with different model hypotheses
 - Minimal SM extensions & 4321 model
- Latest results have shown a 2.8 σ mild excess in data
 - Complementary analyses are underway!
- Studies to explore the sensitivity of VLL searches in HL-LHC also shown

More interesting results expected in the future... Stay tuned!