

VLL@ATLAS

Shalini Epari On behalf of the ATLAS collaboration

12th Edition of the Large Hardon Collider Physics Conference

Introduction

- Multiple hints of physics beyond the Standard Model with no clear answer.
- 'Vector-like' fermions are some of the simplest extensions of the SM at the electroweak scale.
- Several searches for Vector-like Quarks (VLQ) at the LEP and LHC with exclusion up to \sim TeV scale.
- Vector-like Leptons (VLL) searches are relatively new:
 - Appear in many UV complete models: composite Higgs, '4321', warped extra dimensions.
 - May explain the persistent $(g-2)_{\mu}$, Cabibbo angle anomaly, neutrino masses, flavor anomalies.

The ATLAS experiment

- Run 1 (2010-2012) recorded ~5 fb^{-1} at $\sqrt{s} = 7$ TeV and ~20 fb^{-1} at $\sqrt{s} = 8$ TeV.
- Run 2 (2015 2018) recorded ~140 fb^{-1} at $\sqrt{s} = 13$ TeV.
- Significant upgrades to the detector sub-systems between Runs improved particle reconstruction and identification.
- Broad program for VLLs searches in both LHC Runs.

Phenomenology of VLLs

PhysRevD.92.115018

VLLs from an SU(2) doublet

- SU(2) singlet models allow only charged VLLs coupling to SM charged leptons and neutrinos.
- SU(2) doublet models allow an additional neutral VLL; provide
 - substantial enchancement to production cross-sections.
- Rich phenomenology with multiple light leptons, jets and missing transverse energy.

- Today's talk:
 - (Run 1) Search for heavy lepton resonances decaying to a Z boson and
 - <u>leptons</u>, with sensitivity to light VLLs from an SU(2) singlet model,
 - available at <u>JHEP 09 (2015) 108</u>.
 - (Run 2) <u>Search for third generation VLLs</u> from an SU(2) doublet model, available at <u>JHEP 07 (2023) 118</u>.

- Simplest VLLs may occur as an SU(2) singlet or SU(2) doublet:

Search for heavy lepton resonances decaying to a Z boson and a lepton in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector JHEP 09 (2015) 108

- Model-(in)dependent search for heavy lepton resonances with a leptonically decaying Z boson and additional light lepton.
 - Sensitivity to pair-produced VLLs from an SU(2) singlet.
- Select events with atleast 3 charged leptons with exactly one pair compatible with a Z boson and third lepton collimated with Z ($\Delta R_{Z,l} < 3$).
- Signal regions split according to flavor of additional lepton to maximise sensitivity:
 - 'Z + e': $3l(W \rightarrow qq)$, '3l-only' ($!W \rightarrow qq$), 4l.
 - 'Z + μ ': $3l(W \rightarrow qq)$, '3l-only' ($!W \rightarrow qq$), 4l.
- Hunt for a narrowly peaked excess in $\Delta m \equiv m_{3l} m_{Z \rightarrow ll}$
- Major backgrounds (diboson) validated in dedicated regions (WZ, ZZ,

off-Z, high $\Delta R_{Z,l}$)

Result: Vector-like electrons

20.3 fb^{-1} , $\sqrt{s} = 8$ TeV

Result: Vector-like muons

Result: Vector-like muons

20.3 fb^{-1} , $\sqrt{s} = 8$ TeV

Search for third generation vector-like leptons in *pp* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector JHEP 07 (2023) 118

- Mass-degenerate vector-like leptons (τ' and ν'_{τ}) from an SU(2) doublet coupling to SM τ -leptons.
- Multilepton final states (2l, 3l and 4l) with 0 or more hadronic taus (τ_{had}) and atleast one jet.
- State-of-art RNN for distinguish τ_{had} from quark or gluon-initiated jets.
- BDT used to maximise signal efficiency vs back

2l	S	R
		_

			21 SRs			31 SRs	4 <i>l</i> SRs	
Variables			BDT Train	ning Regions				
BDT	2 ℓ SSSF, 1 τ	2ℓ SSOF, 1τ	2ℓ OSSF, 1τ	2ℓ OSOF, 1τ	$2\ell, \ge 2\tau$	$3\ell, \ge 1\tau$	$4\ell, \ge 0\tau$	
N_ℓ	2	2	2	2	2	3	≥ 4	
Charge/flavour	SSSF	SSOF	OSSF	OSOF	-	-	-	
$N_{ au}$	1	1	1	1	≥ 2	≥ 1	≥ 0	
$E_{\rm T}^{\rm miss}$ [GeV]	≥ 120	≥ 90	≥ 60	≥ 100	≥ 60	≥ 90	≥ 60	High Missing transverse energy from
BDT Score	≥ 0.15	≥ 0.1	≥ 0.1	≥ 0.1	≥ -0.11	≥ 0.08	≥ 0.08	
	**					*******	*******	

		_	_			_		-	
karaund	raiaction	and	control	maiar	hadka	rounde (book		1
KUIUUIIU	relection	anu	CONTROL	a 0	DACKU	I UUIIUS (Dack	UD	

VLL@ATLAS | LHCP2024 | Shalini Epari | 06.06.24

11

- Control regions defined by modifying signal region requirements for orthogonality:

Variables			BDT Trair	ning Reg
BDT	2 ℓ SSSF, 1 $ au$	2ℓ SSOF, 1τ	2ℓ OSSF, 1τ	2ℓ OSC
N_{ℓ}	2	2	2	2
Charge/flavour	SSSF	SSOF	OSSF	OS
$N_{ au}$	1	1	1	1
$E_{\rm T}^{\rm miss}$ [GeV]	≥ 120	≥ 90	≥ 60	≥ 1
BDT Score	≥ 0.15	≥ 0.1	≥ 0.1	≥ 0

12

- Control regions defined by modifying signal region requirements for orthogonality:

Variables			BDT Trair	ning Reg
BDT	2 ℓ SSSF, 1 $ au$	2ℓ SSOF, 1τ	2ℓ OSSF, 1τ	2ℓ OSC
N_{ℓ}	2	2	2	2
Charge/flavour	SSSF	SSOF	OSSF	OS
$N_{ au}$	1	1	1	1
$E_{\rm T}^{\rm miss}$ [GeV]	≥ 120	≥ 90	≥ 60	≥ 1
BDT Score	≥ 0.15	≥ 0.1	≥ 0.1	≥ 0

BDT Score

- Control regions defined by modifying signal region requirements for orthogonality:

Variables			BDT Trair	ning Reg
BDT	2 ℓ SSSF, 1 $ au$	2ℓ SSOF, 1τ	2ℓ OSSF, 1τ	2ℓ OSC
N_{ℓ}	2	2	2	2
Charge/flavour	SSSF	SSOF	OSSF	OS
$N_{ au}$	1	1	1	1
$E_{\rm T}^{\rm miss}$ [GeV]	≥ 120	≥ 90	≥ 60	≥ 1
BDT Score	≥ 0.15	≥ 0.1	≥ 0.1	≥ 0

14

- Control regions defined by modifying signal region requirements for orthogonality:

Variables			BDT Train	ning Regions				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
BDT	2 ℓ SSSF, 1 τ	2ℓ SSOF, 1τ	2ℓ OSSF, 1τ	2ℓ OSOF, 1τ	$2\ell, \geq 2\tau$	$3\ell, \geq 1\tau$	$4\ell, \geq 0\tau$	
N_{ℓ}	2	2	2	2	2	3	≥ 4	10 ²
Charge/flavour	SSSF	SSOF	OSSF	OSOF	-	-	-	10
$N_{ au}$	1	1	1	1	≥ 2	≥ 1	≥ 0	
$E_{\rm T}^{\rm miss}$ [GeV]	≥ 120	≥ 90	≥ 60	≥ 100	≥ 60	≥ 90	≥ 60	. 10 ⁻¹
BDT Score	≥ 0.15	≥ 0.1	≥ 0.1	≥ 0.1	≥ -0.11	≥ 0.08	≥ 0.08	
		Fli	p for fake $ au_{had}$ CR					

VLL@ATLAS | LHCP2024 | Shalini Epari | 06.06.24

15

Analysis regions

- 'High' BDT score regions serve as signal regions; inverting the BDT cut serves as validation.

VLL@ATLAS | LHCP2024 | Shalini Epari | 06.06.24

Result: Vector-like taus

- Maximum likelihood fit to data including all signal regions and major backgrounds (WZ, ZZ, ttZ, fake τ_{had}).
- No mass-senstivity in BDT.
- Excluded VLL τ in mass range 130-900 GeV.
- Statistically limited search.

Summary

- Vector-like Leptons (VLL) searches are relatively new:
 - Appear in many UV complete models: composite Higgs, '4321', warped extra dimensions.
 - May explain the persistent $(g-2)_{\mu}$, Cabibbo angle anomaly, neutrino masses, flavor anomalies.
- Broad program for searches for vector-like leptons in ATLAS:
 - (Run 1) Search for heavy lepton resonances decaying to a Z boson and leptons, with sensitivity to light VLLs from an SU(2) singlet model, available at <u>JHEP 09 (2015) 108</u>.
 - (Run 2) Search for third generation VLLs from an SU(2) doublet model, available at JHEP 07 <u>(2023) 118</u>.
- Both searches place 95% CL on different VLL models and are statistically-limited!
- Stay tuned for fresh results on VLLs from the ATLAS experiment!

Backup

BDT

Variable	Description
$E_{\mathrm{T}}^{\mathrm{miss}}$	The missing transverse momentum in the event
$\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$	The missing transverse momentum's significance in the event
L_{T}	The scalar sum of light lepton $p_{\rm T}$ in the event
$L_{\rm T}$ + $E_{\rm T}^{\rm miss}$	The scalar sum of light lepton $p_{\rm T}$ and the missing transverse momentum in the event
$L_{\mathrm{T}} + p_{\mathrm{T}}(\tau)$	The scalar sum of light lepton $p_{\rm T}$ and τ -lepton $p_{\rm T}$ in the event
$p_{\rm T}(\ell_1)$	The leading light lepton's $p_{\rm T}$ in the event
$p_{\rm T}(\ell_2)$	The sub-leading light lepton's $p_{\rm T}$ in the event
$p_{\mathrm{T}}(j_1)$	The leading jet's $p_{\rm T}$ in the event
$p_{\mathrm{T}}(au_{1})$	The leading τ -lepton's $p_{\rm T}$ in the event
N_{j}	The number of jets in the event
N_b	The number of <i>b</i> -jets in the event
$H_{ m T}$	The scalar sum of jet $p_{\rm T}$ in the event
$L_{\rm T}$ + $H_{\rm T}$	The scalar sum of light lepton $p_{\rm T}$ and jet $p_{\rm T}$ in the event
$M_{\ell\ell}$	The invariant mass of all light leptons in the event
$M_{\ell au}$	The invariant mass of all light leptons and τ -leptons in the event
$M_{\ell j}$	The invariant mass of all light leptons and jets in the event
M_{ii}	The invariant mass of all jets in the event
$M_{j\tau}$	The invariant mass of all jets and τ -leptons in the event
M_{T}	The transverse mass of the leading light lepton and $E_{\rm T}^{\rm miss}$ in the event
M _{OSSF}	The invariant mass of the opposite-sign same-flavour light-lepton pair closest to the Z mass in the event
$\Delta \phi(j_1 E_{\rm T}^{\rm miss})$	$\Delta \phi$ between the leading $p_{\rm T}$ jet in the event and $E_{\rm T}^{\rm miss}$
$\Delta \phi(\ell_1 E_{\rm T}^{\rm miss})$	$\Delta \phi$ between the leading $p_{\rm T}$ light lepton in the event and $E_{\rm T}^{\rm miss}$
$\Delta \phi(\ell_1 \ell_2)$	$\Delta \phi$ between the leading and sub-leading $p_{\rm T}$ light leptons in the event
$\Delta \phi(\ell_1 j_1)$	$\Delta \phi$ between the leading $p_{\rm T}$ light lepton and jet in the event
$\Delta \phi(\tau_1 E_{\rm T}^{\rm miss})$	$\Delta \phi$ between the leading $p_{\rm T} \tau$ -lepton in the event and $E_{\rm T}^{\rm miss}$
$\Delta \phi(\ell_1 \tau_1)$	$\Delta \phi$ between the leading $p_{\rm T}$ light lepton and τ -lepton in the event
$\Delta \phi(j_1 au_1)$	$\Delta \phi$ between the leading $p_{\rm T}$ jet and τ -lepton in the event
$\Delta R(j_1 E_{\rm T}^{\rm miss})$	ΔR between the leading $p_{\rm T}$ jet in the event and $E_{\rm T}^{\rm miss}$
$\Delta R(\ell_1 E_{\rm T}^{\rm miss})$	ΔR between the leading $p_{\rm T}$ light lepton in the event and $E_{\rm T}^{\rm miss}$
$\Delta R(\ell_1 \ell_2)$	ΔR between the leading and sub-leading $p_{\rm T}$ light leptons in the event
$\Delta R(\ell_1 j_1)$	ΔR between the leading $p_{\rm T}$ light lepton and jet in the event
$\Delta R(\tau_1 E_{\rm T}^{\rm miss})$	ΔR between the leading $p_{\rm T} \tau$ -lepton in the event and $E_{\rm T}^{\rm miss}$
$\Delta R(\ell_1 \tau_1)$	ΔR between the leading $p_{\rm T}$ light lepton and τ -lepton in the event
$\Delta R(j_1\tau_1)$	ΔR between the leading $p_{\rm T}$ jet and τ -lepton in the event

JHEP 07 (2023) 118

List of the input variables used to train the BDT. The final set is reduced by assessing the impact of removing the lowest-ranked variables on the ROC score for each training region independently.

Variables			
BDT	$ $ 2 ℓ SSSF, 1 τ	2ℓ SSOF, 2	1τ 2ℓ
N_{ℓ}	2	2	
Charge/flavour	SSSF	SSOF	
N_{τ}	1	1	
$E_{\rm T}^{\rm miss}$ [GeV]	≥ 120	≥ 90	
Variables			
BDT	2ℓ SSSF, 1τ	2ℓ SSOF, 1	$\tau 2\ell 0$
BDT Score	≥ 0.15	≥ 0.1	
		Flip for WZ VF	<-0.7
50 study stu	ATLAS √s = 13 TeV, 139 fb ⁻¹ ↓ Data CR tī+Z Post-Fit Other To Fakes	ZZ Triboson WZ Uncertainty	70 ATLAS √s = 13 Te 60 CR WZ Post-Fit 50
40 30 20 10			30 20 10
0 1.4 1.2 8.0 8.0 0.6	-0.4 -0.2	0 BDT Score	0 1.4 1.2 1 0.8 0.6 0.1

<u>JHEP 07 (2023) 118</u>

Results

fits for all three channels

<u>JHEP 09 (2015) 108</u>

- Projections on to the Δm variable of the background-only unbinned maximum likelihood

