

Overview

- Anomaly detection ${\color{black}\bullet}$
 - Growing use in experimental particle physics ullet
 - Generic, model-independent searches
 - No need of signal MC for all models to be probed
- Three ATLAS results covered in this presentation
 - Dijet resonance search with CWoLa, *weakly supervised learning*, PRL (2020) \bullet
 - Search for *H* + generic new particle *X*, *unsupervised learning*, PRD (2023)
 - Search for J + generic new particle X, unsupervised learning, PRL (2024)
 - Making headlines

Analysis 3

Note: None of these analyses use MC for the main analysis! (Only for validation of the method)

Analysis 1

SciTechDaily

PHYSICS

PHYSICS NEW

New Particle? AI Detected Anomaly May Uncover Novel Physics Beyond the Standard Model

National Laboratory DOE Large Hadron Collider Particle Physics

Analysis 1

Dijet search with CWoLa: Overview

- Generic signal search for $A \rightarrow BC$, $B, C \rightarrow$ hadrons lacksquare
- Final state: two large radius jets (JJ) ullet
- Key parameters are mass of the three objects: m_A , m_B , m_C ullet
 - Probing large parameter space: ullet $m_A > 1.9 \text{ TeV}, m_B > 30 \text{ GeV}, m_C > 30 \text{ GeV}$
- Jets: anti- $k_t R = 1.0$, local hadron calibration
 - Trimming applied ullet
- Dataset: Full Run 2 dataset (2015-2018) 139 fb⁻¹ \bullet
- Selection
 - Unprescaled large-radius jet triggers \bullet
 - Two large radius jets with $p_{\rm T} > 200 \,{\rm GeV}$
 - Leading jet $p_{\rm T} > 500 \,{\rm GeV}$
 - Rapidity separation $\Delta y_{II} < 1.2$ lacksquare

PRL 125 (2020) 131801

Dijet search with CWoLa: Method

Classification Without Labels

Analysis 1

- **Only data** used as input, split in **two parts** based on *m*_{*II*} \bullet
 - SR centred on probed dijet mass $m_{II} \approx m_A$ \bullet
 - Sidebands: nearby m_{II} (similar kinematics)
- Assumption: **Mixed samples** *different admixtures of S and B* ullet
- Train DNN to distinguish (classify) SR vs sidebands using the two lacksquarelarge radius jet masses as input: m_1 and m_2
 - Training classifier using impure samples is asymptotically equivalent to training pure samples
 - Train:Validation:Test split is 3:1:1 lacksquare
- Eight different SRs considered, bins of m_{II} lacksquare
 - A separate analysis is performed for each such bin

CWoLa is *weakly supervised anomaly detection method*. Need to define two datasets with different presumed admixtures of *S* and *B*.

4

Analysis 1

Dijet search with CWoLa: Demonstration

- Two selections are performed on the DNN classification output
 - Medium, $\varepsilon = 0.1$: Keeping the 10% most anomalous (SR-like) events ullet
 - Tight, $\varepsilon = 0.01$: Keeping the 1% most anomalous events lacksquare
- Can scan the sample to see if these events cluster at any given (m_{I1}, m_{I2}) region ullet

Mapped efficiency in SR defined by $m_{II} \in [2.74, 3.24]$ GeV 10⁰ m₂ [GeV] Efficiency m₂ [GeV] ATLAS $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ No Injected Signal 10^{-1} 300 200 10^{-2} 100 10⁻³ 0 500 200 300 400 100 m₁ [GeV]

Dijet search with CWoLa: Results

ullet

Analysis 1

- If any signal is present, *S*/*B* will be greatly enhanced, and hence signal sensitive increased lacksquare
- 3 separate parametric functions are used, and a bump hunt is performed

After applying the anomaly selection (e.g. $\varepsilon > 0.1$), the m_{II} spectrum is fit using a parametric function

Higgs + X Search: Overview

- Search for heavy resonance Y decaying to HX, with $H \rightarrow bb, X \rightarrow$ hadrons
 - Extensive experience identifying $H \rightarrow bb$ with high efficiency lacksquare
- Heavy resonance Y probed in range $m_Y \in [1,6]$ TeV lacksquare
- Analysis sensitive to wide arrange of possible decays of **particle** *X* lacksquare
 - Two-prong decay ($X \rightarrow qq$) used for benchmark
 - Many other decay topologies checked: three-prong, displaced vertices (heavy-flavour), dark jets (patterns of missing and visible energy)
 - Sensitive to wide range of mass: $m_X \in [\sim 50, \sim 3000]$ GeV
- Signal grid: (m_Y, m_X)
- Run 2 dataset collected using large-radius jet triggers lacksquare
 - $p_{T,I} > 500 \text{ GeV}, m_{JJ} > 1.3 \text{ TeV}$
 - $H \rightarrow bb$ identified using NN-based tagging+ $m_{hh} \in (75, 145)$ GeV

Higgs + X Search: Anomalous jet tagging

- Variational recurrent neural networks (VRNN) are used to identify the anomalous X candidate ullet
 - VRNN trained using all jet constituent 4-momenta as input lacksquare
 - Assigns a per-jet anomaly score (AS) \bullet
 - Unsupervised training
 - AS defined from the VRNN loss function:

Loss Output Input Input Kullback-Leibler

$$\mathcal{L}(t) = |\mathbf{y}(t) - \mathbf{x}(t)|^2 + \lambda D_{\mathrm{KL}}(z||z_t)$$

Higgs + X Search: Demonstration

- Analysis is tested using different BSM scenarios \bullet
 - Generic $Y \rightarrow XH \rightarrow qqbb$ (left) ullet
 - $X \rightarrow$ dark jet, 3 prong decay, heavy flavour (right)
- Real data shown as yellow filled histogram \bullet
- Jets are deemed anomalous if $J_X > 0.5$ \bullet

Higgs + X Search: Results

- In the anomaly SR ($J_X > 0.5$), a bump-hunt is performed using a (m_X, m_Y) grid ullet
- Largest excess for $m_X \approx 85$ GeV, $m_Y \approx 3.7$ TeV (see below). But global significance (only) 1.4 σ .
- Upper limits set on benchmark models by injection of MC signal. Compared to traditional two-prong tagging

Jet + X search: Overview

- Search for generic mass resonance in a BSM 2-body decay:
 - 9 final states considered: *jj*, *jb*, *bb*, *je*, *be*, *jγ*, *bγ*, *jμ*, *bμ*
- All events are required to contain a lepton (*e* or μ) with $p_T > 60$ GeV (trigger)
 - Reduces QCD multijet background
- Unbiased selection of (b)jets: gives access to low jet $p_{\rm T}$ region (down to 30 GeV!) • Large phase-space probed (kinematics+particle type and multiplicity) • Use unsupervised learning to identify **anomalous** events
- Input large range of kinematic features (more later)
 - Anomalous detectrion baed on **autoencoder**
- Mass spectrum scanned for bump in the nine probed final states, i.e.
 - $m_{ij}, m_{jb}, m_{bb}, m_{be}, \dots, m_{b\mu}$

PRL 132 (2024) 081801

 $Y \rightarrow jj$

 $Y \rightarrow je$

 $Y \rightarrow b\mu$

j =light jet b = b-tagged jet $e = electron, \dots$

Jet + X search: Kinematic input

- Kinematics of each event is encoded in the **Rapidity Mass Matrix** ullet
- \bullet
 - Up to 36 physics objects considered for each event: 10 jets, 10 b-jets, 5 e, 5 μ , 5 γ + $E_{\rm T}^{\rm miss}$ ullet
- - Exclude the 9 invariant masses probed in the end (leading objects only) ullet
 - Number of elements: $36^2 9 = 1287$ lacksquare
- No object \rightarrow elements = 0. Pre-processing: elements \in [0,1] •

Contains key kinematic variables suitable for exotic searches—more robust performance than four-momenta

Holds metrics of: y, m_T for each object, diagonal: p_T -imbalance, Δy + inv. mass m_{ab} for each obj. pair ab

$e_{\rm T}^{\rm miss}$	$m_T(j_1)$	$m_T(j_2)$	$\dots m_T(j_N)$	$m_T(\mu_1)$	$m_T(\mu_2)$	
$h_L(j_1)$	$\mathbf{e_T}(\mathbf{j_1})$	$m(j_1,j_2)$	$\dots m(j_1, j_N)$	$m(j_1,\mu_1)$	$m(j_1,\mu_2)$	
$h_L(j_2)$	$h(j_1, j_2)$	$\delta \mathbf{e_T}(\mathbf{j_2})$	$\dots m(j_2, j_N)$	$m(j_2,\mu_1)$	$m(j_2,\mu_2)$	
			· · · ,			
$h_L(j_N)$	$h(j_1, j_N)$		$\dots \delta \mathbf{e_T}(\mathbf{j_N})$	$m(j_N,\mu_1)$	$m(j_N,\mu_2)$	
$h_L(\mu_1)$	$h(\mu_1, j_1)$	$h(\mu_1, j_2)$	$\dots h(\mu_1, j_N)$	$\mathbf{e_{T}}(\mu_{1})$	$m(\mu_1,\mu_2)$	
$h_L(\mu_2)$	$h(\mu_2, j_1)$	$h(\mu_1, j_2)$	$\dots h(\mu_2, j_N)$	$h(\mu_1,\mu_2)$	$\delta \mathbf{e_T}(\mu_2)$	
$h_L(\mu_N)$	$h(\mu_N, j_1)$	$h(\mu_N, j_2)$	$\dots h(\mu_N, j_N)$	$h(\mu_N,\mu_1)$	$h(\mu_N,\mu_2)$	
•						

Example RMMs from analysis 36×36 matrix. *Quite different depending on final state! Objects are* p_{T} *sorted. Higher* p_{T} *to the left.* arXiv:1810.06669

Jet + X search: Method

- Autoencoder implemented using TensorFlow. Encoder+Decoder. Structure displayed below \bullet
- 1% of the data is randomly selected for training ullet
 - Probability of finding BSM signal in this subset considered negligible ullet
 - Provides sufficient training stats, further split 7:3, training:validation
- Key quantity: loss calculated between input and output. \bullet
 - An atypical event will get a large loss \rightarrow deemed anomalous lacksquare

Training repeated 50 times with different random initializations \rightarrow 50 separate AEs *Generally similar performance.* Median loss AE used for end analysis.

Jet + X search: Result + validation

Events

- Plot of anomalous score for all events
 - Data peaks at ≈ -11
- Three anomalous regions (ARs) defined:
 - > -9.1, keeps 10 pb/140 fb of data (0.0071%)
 - > 8.0, keeps 1 pb/140 fb of data
 - > 6.7, keeps 0.1 pb/140 fb of data
- MC predictions from BSM scenarios overlayed
 - Significantly shifted to high scores
- Anomalous score found robust as function of time and beam/pileup conditions
- Each region analyzed separately
 - Loosest region (10 pb AR) generally give bests sensitivity
 - Shown on next slide

More anomalous

Jet + X search: Result

- The 9 mass distributions plotted in the three ARs (27 spectra).
- Bin width mimics detector resolution
- Here 10 pb AR
- Bump hunt performed.
- Largest access found for $Y \rightarrow j\mu$ at $m_{j\mu} = 4.8 \text{ TeV}$
 - Local significance: 2.9 sigma
 - Not observed in 1 pb AR nor the 0.1 pb AR

Jet + X search: Limits

- Limits are placed based on Gaussian mass peaks with assuming different intrinsic width
 - Zero width (black points)
 - $\sigma_m/m = 0.15$ (blue points)
- The narrower width gives better limits (as expected)
- Zero width means the signal is assumed to give a Gaussian shape with a σ = detector resolution
- Largest deviation

Jet + X search: AE improvement

- Here, results using the 10 pb AR are compared with all data
 - I.e. using vs not using AE
- Different benchmark BSM models are tested, and the significance often increase substantially.
 - +200% means significance $\times 3$ (e.g. $1\sigma \exp \rightarrow 3\sigma \exp 3$)
- Some models with low mass with signature close to SM degrade
 - Loss in stats hurts more than gain in s/b

$$\Delta Z = ((Z_{AE}/Z) - 1) \times 100\%$$

$$Z = \sqrt{2((s+b)\ln(1+s/b) - s)}$$

Conclusion

- ATLAS has published three analyses that use anomaly detection • All look for a mass resonance in a subset of events deemed anomalous
- Final states probed
 - Dijet search $Y \rightarrow AB$ (CWoLa method) lacksquare
 - Dedicated $Y \rightarrow H + X, H \rightarrow bb$ lacksquare
 - $Y \rightarrow j + X$, in events with at least one charged lepton (e or μ)
- In each case, the results are model independent
- No excess content with a mass resonance found ullet
- Limits are placed under different assumption on the mass resonance width Γ_V \bullet
- Anomaly detection is a powerful way to cast a wide net in the search for new physics

