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Two applications under development S

-

In the trigger to select
showers in the muon
detector

.
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Making use of the full
software trigger, running

on GPU

~

Remaining maximally
model independent for
various BSM models

Reducing the number of
trigger lines

Reducing the difference
between MC and data

In the control
room to flag
anomalous runs

~

Reducing the
workload of the
shifters

J
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Increasing the
quality of the data



https://doi.org/10.48550/arXiv.2405.15508
https://cds.cern.ch/record/2899695/

The LHCDb detector

* Forward spectrometer for beauty and charm physics

« Unique phase space region (2 <1n < 5)
* Complementary to ATLAS and CMS

* Designed for
* High precision tracking and vertexing
* Vertex locator, multiple tracking stations + magnet
» Eixcellent particle identification

 Two RICH detectors, EM- and HAD- calorimeters
* Muon detector

e Used tfor BSM searches
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LHCD results from proton-ion collisions, L. M. Massacrier, 2015, 45th
International Symposium on Multiparticle Dynamics
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* Feebly interacting particles appear in many BSM scenarios
* Heavy Neutral Leptons (HNL) |1]
* Axion like particles [2]

Unique detector signatures

* Long lifetimes lead to unique challenges and opportunities
* LLPs could decay beyond tracking stations

* We can use the muon system as a sampling calorimeter
* Very rare signature in the SM
* Similar searches by ATLAS 3] and CMS [4, 5]
* Accepted/proposed dedicated future experiments [sHiP, MATHUSLA, and others|
* LHCb could contribute in a short timescale |6]
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LHCDb muon detector

* Four multiwire proportional chambers (M2-M5)

* Three iron layers of each 4.84;
(80 c¢m of iron)

Unexpected shower

* Large decay volume

. Side View gpcar HCAL M4
* But not designed for shower e w ™
detection = | A\

* No energy deposit
measurements

Vertex ) < H i
Locator
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LHCDb reoptimized detector design and performance : Technical Design Report, LHCb
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LHCDb muon detector

* Four multiwire proportional chambers

* Three iron layers of each 4.84;
(80 c¢m of iron)

* Large decay volume

LHCDb reoptimized detector design and performance : Technical Desien Report, LHCb

Collaboration, 2003

* But not designed for shower
detection
* No energy deposit
measurements /
* Very clean environment

* First plane (M2) after 6.71; of material
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Handbook of Particle Detection and Imaging, R. Wigma

Calorimeter depyfl (Ain1)

a

igmans, pp 497-517
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LHCDb trigger

* Select events to save to disk
e Run at 40 MHz

* Full software trigger at LHCDb

* Selecting specific signatures

« HL'T'1

+ ~99.9 — 99.99% background rejection ©™ |
* Running on GPU farm

—> fast neural network inference 127 l ‘ S Caeranon
« HLT2 _
¢ Running On CPU 80 Gb/S l ‘ 68%.TURBO8f
» Partially saving event information

LHCB-TDR-021
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: ch epre
Normalised autoencoders pisg =PrL
* Encoder and decoder neural networks |7]

* Information compression in the latent space

* Train on the background to minimise the reconstruction error

* Add a normalisation to punish a too large reconstructible space
* j.e., reconstruct well minimum bias events, and only them
* Reconstructible = sufficiently low error

* Use Monte Carlo sampling to estimate the normalisation
* Sampling probability related to the reconstruction error

* Train on unfiltered pp interactions

» Evaluate efficiency on axion sample

.- -+ +_+ T _ _
H-oAA, A->1t7t7, 1t > ntntn™v, my = 10 GeV, Takion = 1 ns

* Only considering decays in muon detector
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Does 1t work?

* The reconstruction error provides a
very discriminant variable

* Much larger for signal

* Similar /better than usual
BDTs/NNs classifiers using signal
samples

* Can be trained on data background
only
* No need for (MC) signal
* No issues with MC-data differences
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Including bin overflow
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How does etficiency vary?

* Naturally more performant
for larger showers

* Correlated with the energy

* Flat efficiency curve as a
function of 1y,
* Distance to the beam pipe

* Worse near the beam
-> larger background

* Increased efficiency for
decays before active layers
* Shower starts in the shields

* Distance until its maximal
size
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Data quality monitoring R&D

(88 EPFL

Proof of concept, not yet implemented in LHCb

* Many (non-expert) shifters required in the LHCb control room

* Costly and with limited accuracy

» Shifter rotation leads to variations in judgements

* Rewards based on human feedback
* Data quality easy to spot for humans

Human-in-the-loop Reinforcement Learning for Data
Quality Monitoring in Particle Physics Experiments,
O. J. Parra et al, 2024, arXiv:2405.15508

* Hard to manually provide updated references for all the histograms

* Operational regime changes over time
* Model needs to adapt constantly

 T'wo contexts:
o Offline: All labels available

state reward
S R,

R,

’J Agent
|

7

<
«

Sii

* Online: Shifter does not label all histograms

05.06.24 LHCP 2024: Anomaly detection at LHCb

-

\,

Environment ]4—

action
A,

Reinforcement Learning: An introduction, R. S. Sutton & A. G.

Barto, The MIT Press, 2015
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The setup

* Human feedback
 Flag data taking episodes (e.g. ~5 minutes) as normal or anomalous O
* Consider perfect or limited accuracy

* Reinforcement learning

* Predictor: Classifies histogram as good /bad =
» Checker. Decides to call for feedback or not U=
 Small multilayer perceptron (ax g

* Rewards:
* Predictor: if correct/wrong
o Checker: based on confidence on its decision
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Toy results and next steps

* Generated toy samples
* Same distribution for normal episodes
e Varied distributions for the anomalies

* Algorithm performs beyond noisy labels
» Also resistant to changes
* Eiven when biased by the predictions
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Summary

* Development of first anomaly detection trigger in LHCb

* Making use of GPUs LHCb-FIGURE-2024-015
* Increasing sensitivity for LLPs

« Comparable (if not better) results than usual classifiers methods

* Model independent selection
* Higher efficiencies
* Fewer trigger lines, fewer models to develop and maintain

* Fewer weights to store in memory and to infer
* Not (as) limited by data-MC differences

* Development of anomaly detection for data quality monitoring [ Xiv2:06.1508

* Promising results on toy study
* Higher quality for less effort
* Study application in LHCb
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* [1] Heavy neutral leptons - minimal and testable explanation for Beyond Standard Model phenomena, , K.
Bondarenko, 2021, HEPHY seminar

* [2] Axion cosmology, D. J. E. Marsh, Physics Reports Volume 643, 2016
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Simple BDT

Hit counting not sufficiently discriminant for the trigger

Improved efficiencies by using a y?/N test using the number of

hits in N parts of the muon system

e Train a BDT as standard in HEP

* Reference to compare the other models to

 Train on MC background and signal (axion)

* (Good results on the axion, much poorer on the HNLs— eX
* Very large differences between data and MC

* Very sensitive to data taking conditions

Sig. eff. @ 99.99% bkg rej (48.4 + 0.4)% (6.1 +0.2)% (83+0.2)%




BDT and NN output

* Some overtraining in the tail of the
background distributions

* Very difficult to remove without sacrificing
signal efficiencies

* Verv few events in that range

——— Train signal - Test signal +

Train background 4 Test background Train sig Test sig
—— 99.9% bkg rej Train bkg ~+  Test bkg
S NN BN e W —— 99.9% bkg rej
E B HCb Simulation ] = 100 38 LA NN A BN R IR |
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* More hits from the signal shower required

* Translates to larger energy

* Stronger dip for larger ry,,
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Samples and features

* Simulated samples
* Mininum bias: unfiltered pp events
 Axion H - AA, A - 11, 1 = i, my = 10 GeV
 HNLs B, = Nu, N - eX, m = 1.6,4 GeV

* X anything hadronic leading to a shower

Region 4
* Require a shower within the muon detector e
e Shower caused by particle decay in the shields ° N
secter—> - ical channel
* Number of hits per parts of the detector —
Region 3 Logical pad

* Separate per station, region, quarter
* Qutermost region (4) split into three

mmmmm

| |Region 2

g Reg 1| 12.5mm x 63mm
) 6.3mm x
/é 31mm
( &
ﬁ 300/ | 300 0

Beam Pipe Sheilding

LHCb muon system : Technical Design Report, 2001
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Autoencoders in a nutshell (EEg EPFL

* Two back-to-back neural networks
* “Encoder”: reduces the dimensionality of the input
* Bottleneck: dimension of the latent space
* “Decoder”: reconstructs the original input from the latent space

* Train to minimise the reconstruction error

* Bottleneck reduces the “generalisation” to other types of events

Input Output

* Small error on background events
* Large error on signal events
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Encoder Decoder
Applied Deep Learning - Part 3: Autoencoders, Arden Dertat
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How well does it work? oo

e Clear struggle to reconstruct the 5[ LHCOsmbtggg — .
input well for the signal £

. . ) < 01k o -

* Significant portion of the signal as L '

well reconstructed as the background (o[ : .
* Make use of the HLT1 GPUs = B b |

103 £ i { {  Test, sig i fI( -

Test, bkg 3

: X
-I 1 1 1 I 1 III II I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 J I 1 1 1
~1.0 -05 0.0 0.5 1.0 15

log1o(MSE)

Sig. eff. @ 99.99% bkg rej (38.9 £ 0.2)% 3.3+ 0.2)% (53+0.2)%
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What is limiting the performance? R

* Reconstructible space larger than just the only the background
events distribution

* Signal events also well reconstructed = efficiency loss
* Ideally only reconstruct well the background

* Constrain the “size” of the reconstructible space
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Can we improve using some signal 2SS

o Reference
 Autoencoders have limited New event event
adaptability
* Siamese neural networks Feature Feature
* Trained on pairs of (background, ExTaCOn SRR

background) and (background, signal)

* Keep a set of reference events that Vector et
could be updated €Cto ector

* Lower performance than NAE

Similarity classifier

Sample | fiiency 14

Axion, 10 GeV 27.8 1+ 0.4
HNL, 1.6 GeV 3.9+ 0.2

HNL, 4 GeV 4.6 + 0.2
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Siamese NN: nHits dependence 8y EPFL

* Requires many more hits from the
signal shower to be efficiently selected

 Efficiency never reaches 100% [ HCb-FIGURE-2094.015

* Further improvements could be 4 99.90% bk reid- 99.99% bke rej
: [T T T T " T T T T T T T
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usual binary cross-entropy
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