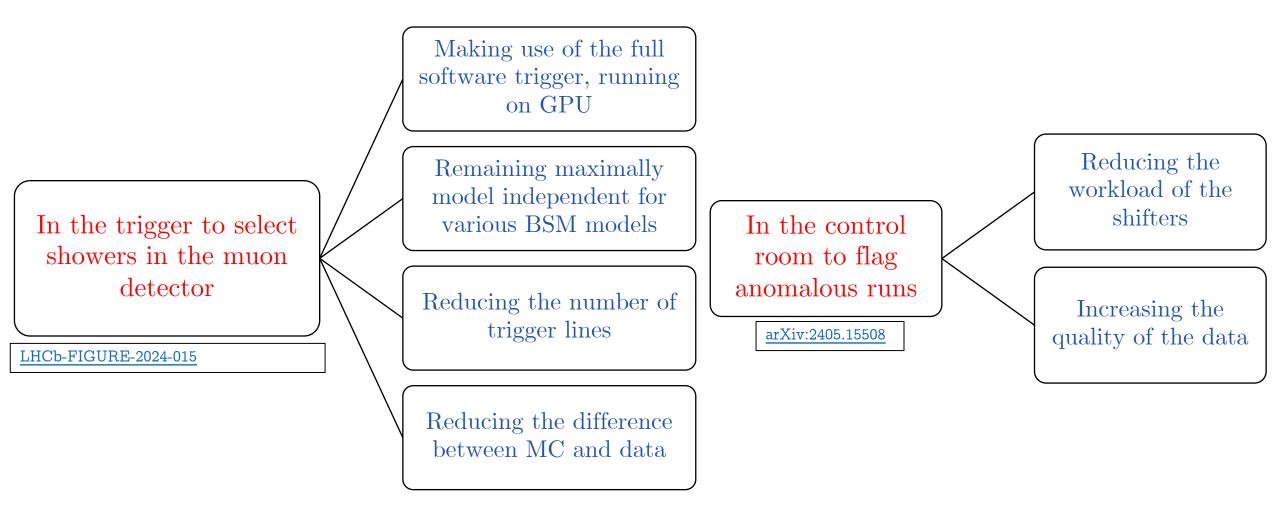


Anomaly detection at LHCb

Luca Hartman, on behalf of the LHCb collaboration

LHCP 2024: Anomaly detection at LHCb

Two applications under development

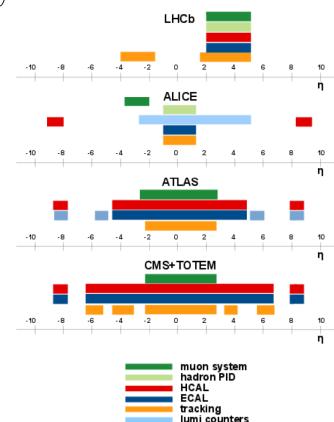


LHCD

EPEL

The LHCb detector

- Forward spectrometer for beauty and charm physics
 - Unique phase space region $(2 < \eta < 5)$
 - **Complementary** to ATLAS and CMS
- Designed for
 - High precision tracking and vertexing
 - Vertex locator, multiple tracking stations + magnet
 - Excellent particle identification
 - Two RICH detectors, EM- and HAD- calorimeters
 - Muon detector
- Used for BSM searches



Unique detector signatures

- Feebly interacting particles appear in many BSM scenarios
 - Heavy Neutral Leptons (HNL) [1]
 - Axion like particles [2]
- Long lifetimes lead to unique challenges and opportunities
 - LLPs could decay beyond tracking stations
- \bullet We can use the **muon system** as a sampling calorimeter
 - Very rare signature in the SM
 - Similar searches by ATLAS $[\underline{3}]$ and CMS $[\underline{4}, \underline{5}]$
 - Accepted/proposed dedicated future experiments [SHiP, MATHUSLA, and others]
 - LHCb could contribute in a short timescale $[\underline{6}]$

LHCP 2024: Anomaly detection at LHCb

Vertex Locator

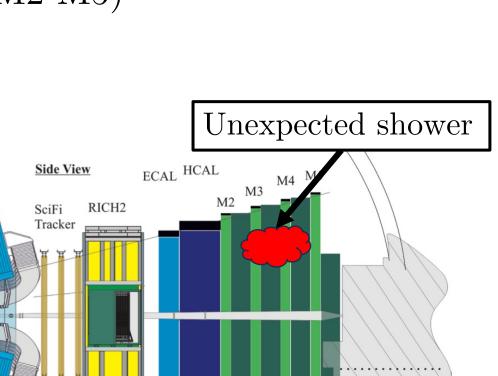
Magnet

Collaboration, 2003

RICH1

5

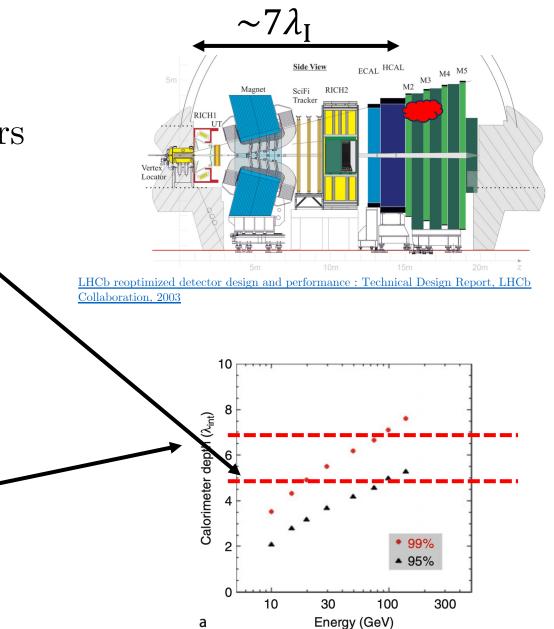
- LHCb muon detector
- Four multiwire proportional chambers (M2-M5)
- Three iron layers of each $4.8\lambda_I$ (80 cm of iron)
- Large decay volume
- But **not** designed for shower detection
 - No energy deposit measurements



LHCb reoptimized detector design and performance : Technical Design Report, LHCb

LHCb muon detector

- Four multiwire proportional chambers
- Three iron layers of each $4.8\lambda_I$ (80 cm of iron)
- Large decay volume
- But **not** designed for shower detection
 - No energy deposit measurements
- Very **clean** environment
 - First plane (M2) after $6.7\lambda_{\rm I}$ of material



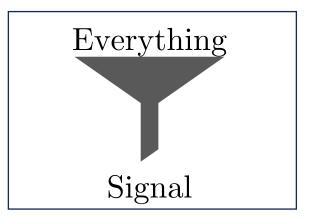
Handbook of Particle Detection and Imaging, R. Wigmans, pp 497–517

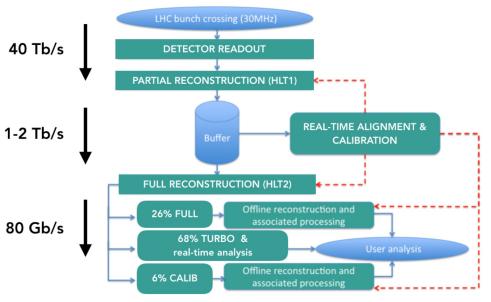
LHCb trigger

- Select events to save to disk
 - $\bullet~{\rm Run}$ at $40~{\rm MHz}$
- Full software trigger at LHCb
 - Selecting **specific** signatures
- HLT1
 - ~99.9 99.99% background rejection ^{40 ть/s}
 - Running on **GPU** farm
 - \rightarrow fast neural network inference

• HLT2

- Running on CPU
- Partially saving event information





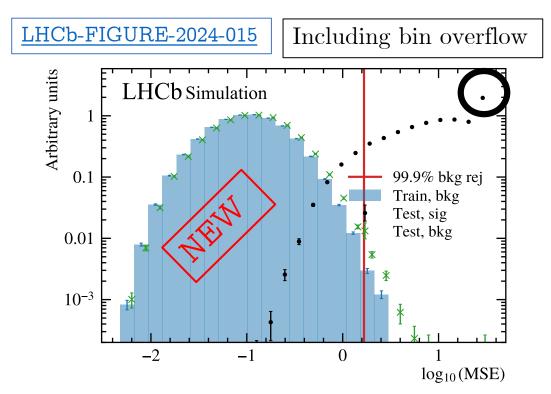
LHCB-TDR-021

Normalised autoencoders

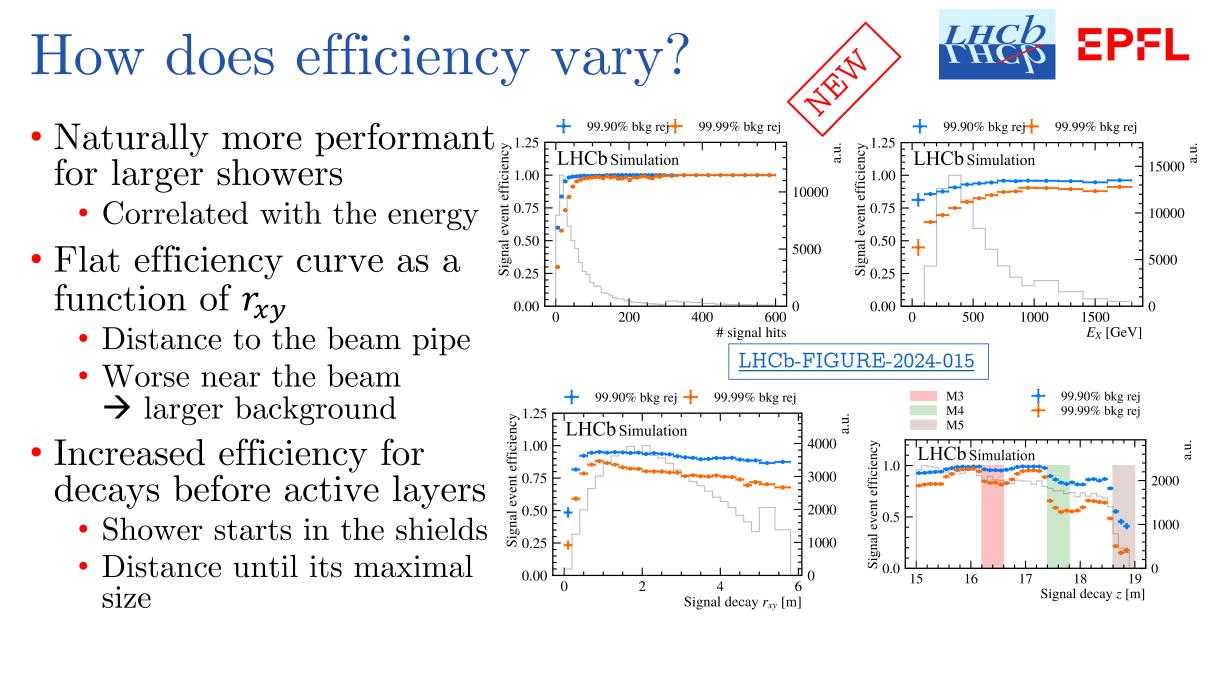
- Encoder and decoder neural networks [7]
 - Information compression in the latent space
 - Train on the **background** to minimise the **reconstruction error**
- Add a **normalisation** to punish a too large reconstructible space
 - i.e., reconstruct well minimum bias events, and *only them*
 - Reconstructible = sufficiently low error
- Use Monte Carlo sampling to estimate the normalisation
 - Sampling probability related to the reconstruction error
- Train on unfiltered pp interactions
 - Evaluate efficiency on axion sample $H \rightarrow AA, A \rightarrow \tau^+ \tau^-, \tau^\pm \rightarrow \pi^\pm \pi^\pm \pi^\mp \nu, m_A = 10 \text{ GeV}, \tau_{axion} = 1 \text{ ns}$
 - Only considering decays in muon detector

Does it work?

- The reconstruction error provides a very discriminant variable
 - Much larger for signal
- Similar/better than usual BDTs/NNs classifiers using signal samples
- Can be trained on data background only
 - No need for (MC) signal
 - No issues with MC-data differences



Sample	Efficiency [%]
Axion, 10 GeV	80.0 ± 0.5
HNL, 1.6 GeV	10.3 ± 0.3
HNL, 4 GeV	15.7 ± 0.3

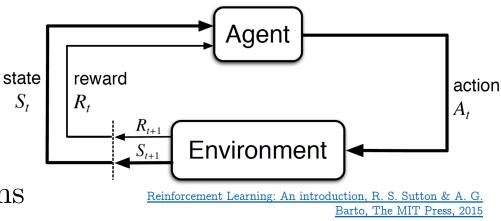


Data quality monitoring R&D

Proof of concept, not yet implemented in LHCb

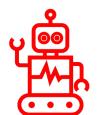
- Many (non-expert) shifters required in the LHCb control room
 - Costly and with limited accuracy
 - Shifter rotation leads to variations in judgements
- Rewards based on human feedback
 - Data quality easy to spot for humans
 - Hard to manually provide updated references for all the histograms
- Operational regime changes over time
 - Model needs to adapt constantly
- Two contexts:
 - *Offline*: All labels available
 - Online: Shifter does not label all histograms

Human-in-the-loop Reinforcement Learning for Data Quality Monitoring in Particle Physics Experiments, O. J. Parra *et al.*, 2024, <u>arXiv:2405.15508</u>



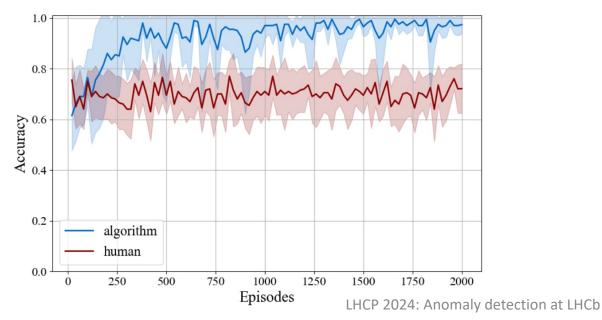
The setup

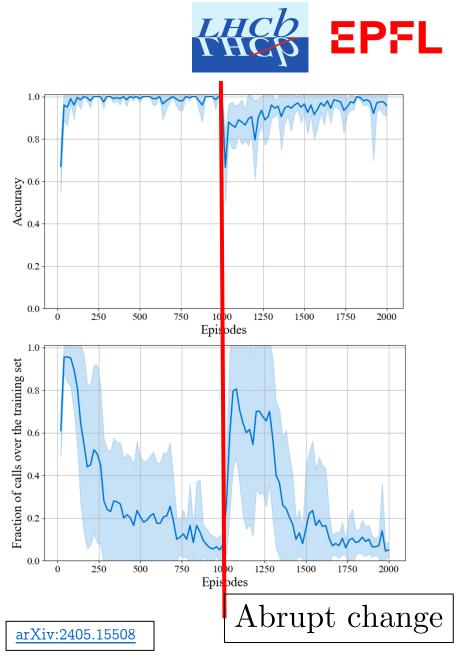
- Human feedback
 - Flag data taking episodes (e.g. ${\sim}5$ minutes) as normal or anomalous
 - Consider perfect or limited accuracy
- Reinforcement learning
 - • Predictor: Classifies histogram as good/bad
 - *Checker*: Decides to call for feedback or not
 - Small multilayer perceptron
- Rewards:
 - *Predictor:* if correct/wrong
 - *Checker*: based on confidence on its decision



Toy results and next steps

- Generated toy samples
 - Same distribution for normal episodes
 - Varied distributions for the anomalies
- Algorithm performs beyond noisy labels
 - Also resistant to changes
 - Even when biased by the predictions





14

• Making use of GPUs

• Development of first anomaly detection trigger in LHCb

- Increasing sensitivity for LLPs
- Comparable (if not better) results than usual classifiers methods
- Model independent selection
 - Higher efficiencies

Summary

- Fewer trigger lines, fewer models to develop and maintain
- Fewer weights to store in memory and to infer
- Not (as) limited by data-MC differences
- Development of anomaly detection for **data quality monitoring**
 - **Promising results** on toy study
 - Higher quality for less effort
 - Study application in LHCb

LHCb-FIGURE-2024-015

arXiv:2405.15508

References

- [1] <u>Heavy neutral leptons minimal and testable explanation for Beyond Standard Model phenomena</u>, , K. Bondarenko, 2021, HEPHY seminar
- [2] <u>Axion cosmology</u>, D. J. E. Marsh, Physics Reports Volume 643, 2016
- [3] Search for events with a pair of displaced vertices from long-lived neutral particles decaying into hadronic jets in the ATLAS muon spectrometer in pp collisions at $\sqrt{s} = 13$ TeV, ATLAS Collaboration, 2022, Phys.Rev.D 106 (2022) 3, 032005
- [4] <u>Search for Long-Lived Particles Decaying in the CMS End Cap Muon Detectors in Proton-Proton Collisions</u> at $\sqrt{s} = 13$ TeV, CMS Collaboration, 2021, Phys.Rev.Lett. 127 (2021) 26, 261804
- [5] <u>Search for long-lived heavy neutral leptons decaying in the CMS muon detectors in proton-proton collisions</u> at $\sqrt{s} = 13$ TeV, CMS Collaboration, 2024, arXiv:2402.18658
- [6] <u>Feebly interacting particles: Status and Perspectives (with special attention to LHCb)</u>, G. Lanfranchi, INFN e Laboratori Nazionali di Frascati, *Public LHCb meeting on Feebly Interacting Particles*, 2024
- [7] <u>Autoencoder Under Normalization Constraints</u>, S. Yoon *et al*, 2021, arXiv:2105.05735

BACKUP

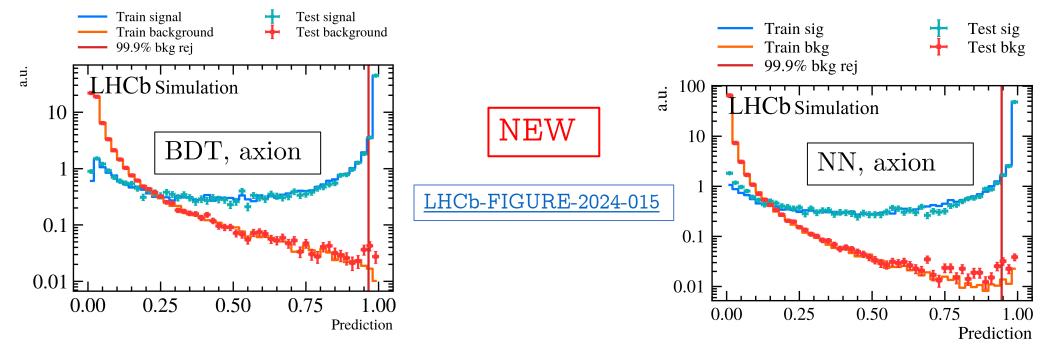
Simple BDT

- Hit counting not sufficiently discriminant for the trigger
- Improved efficiencies by using a χ^2/N test using the number of hits in N parts of the muon system
- Train a BDT as standard in HEP
 - Reference to compare the other models to
 - Train on MC background and signal (axion)
 - Good results on the axion, much poorer on the HNLs $\rightarrow eX$
 - Very large differences between data and MC
 - Very sensitive to data taking conditions

Sample	Axion	HNL 1.6 GeV	HNL 4 GeV
Sig. eff. @ 99.99% bkg rej	$(48.4 \pm 0.4)\%$	$(6.1 \pm 0.2)\%$	$(8.3 \pm 0.2)\%$

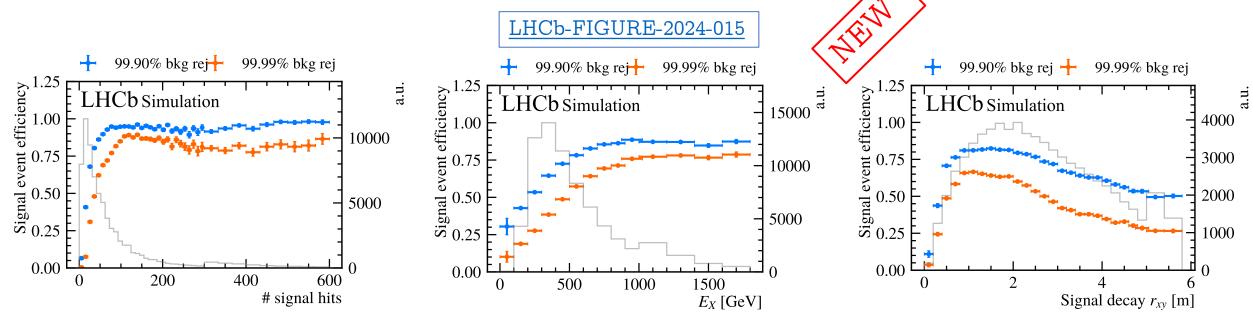
BDT and NN output

- Some overtraining in the tail of the background distributions
 - Very difficult to remove without sacrificing signal efficiencies
 - Verv few events in that range



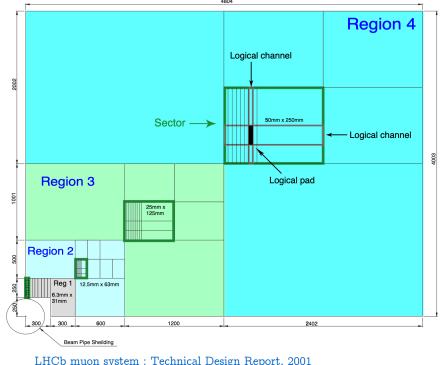
NN efficiency curves

- Similar trends as for the NAE
- More hits from the signal shower required
- Translates to larger energy
- Stronger dip for larger r_{xy}



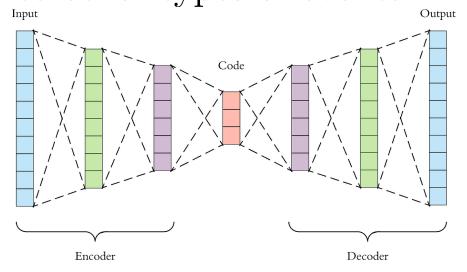
Samples and features

- Simulated samples
 - Mininum bias: unfiltered pp events
 - Axion $H \to AA,\, A \to \tau\tau,\, \tau \to \pi\pi\pi,\, m_A = 10~{\rm GeV}$
 - HNLs $B_u \rightarrow N\mu$, $N \rightarrow eX$, m = 1.6, 4 GeV
 - X anything hadronic leading to a shower
- Require a shower within the muon detector
 - Shower caused by particle decay in the shields
- Number of hits per parts of the detector
 - Separate per station, region, quarter
 - Outermost region (4) split into three



Autoencoders in a nutshell

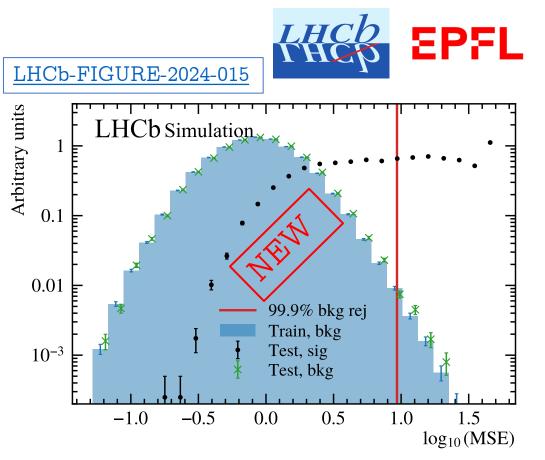
- Two back-to-back neural networks
 - "Encoder": reduces the dimensionality of the input
 - Bottleneck: dimension of the latent space
 - "Decoder": reconstructs the original input from the latent space
- Train to minimise the reconstruction error
- Bottleneck reduces the "generalisation" to other types of events
 - Small error on background events
 - Large error on signal events



Applied Deep Learning - Part 3: Autoencoders, Arden Dertat

How well does it work?

- Clear struggle to reconstruct the input well for the signal
- Significant portion of the signal as well reconstructed as the background
- Make use of the HLT1 GPUs



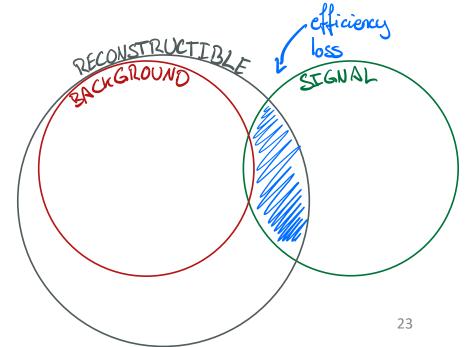
Sample	Axion	HNL 1.6 GeV	HNL 4 GeV
Sig. eff. @ 99.99% bkg rej	$(38.9 \pm 0.2)\%$	$(3.3 \pm 0.2)\%$	$(5.3 \pm 0.2)\%$

What is limiting the performance?

• Reconstructible space larger than just the only the background events distribution

LHCP 2024: Anomaly detection at LHCb

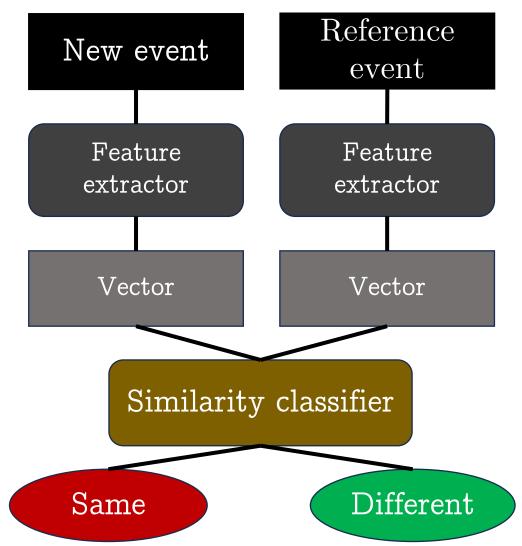
- Signal events also well reconstructed \rightarrow efficiency loss
- Ideally only reconstruct well the background
- Constrain the "size" of the reconstructible space



Can we improve using some signal?

- Autoencoders have limited adaptability
- Siamese neural networks
 - Trained on pairs of (background, background) and (background, signal)
 - Keep a set of reference events that could be updated
- Lower performance than NAE

Sample		Efficiency [%]	
Axion, 10	GeV	27.8 <u>+</u>	0.4
HNL, 1.6 G	GeV	3.9 <u>+</u>	0.2
HNL, 4 Ge	V	4.6 ±	0.2
05.06.24	LHCb-FIGU	RE-2024-015	LHCP 2024: Anom



Siamese NN: nHits dependence

- Requires many more hits from the signal shower to be efficiently selected
- Efficiency never reaches 100%
- Further improvements could be possible
 - Contrastive loss function instead of a usual binary cross-entropy
 - Currently unbalanced samples
 - Background: $\sim 450k$ events
 - Signal: $\sim 80k$ events
 - Limited by inefficient signal generation

