

Searches for New Massive Scalars

LHCP 2024 12th edition of the Large Hadron Collider Physics Northeastern University, Boston, USA, 03-07.06.2024

Pawel Brückman de Renstrom (Institute of Nuclear Physics P.A.N., Cracow PL)

Foreword

We are getting to know the H_{125} resonance ever better. It has confirmed it's SM Higgs predicted properties \Rightarrow BSM ~alignment limit

- \Rightarrow suppressed bosonic couplings
- Couplings to down-type fermions
 probed by tauonic & bb final states X
- Couplings to up-type fermions @ high masses require *t*t final states (particularly difficult!)
- Generic scenarios can be probed in scalar cascades
- Numerous searches rely on Narrow Width Approximation (NWA) !

LHCP 2024 04/06/2024

140 fb⁻¹ of Run 2 data still in the game!

Menu of the talk – Search for heavy scalar resonances

Search for heavy CP even/odd scalar decaying to a pair of top quarks in the leptonic final state

• Inclusive channel suffers from the strong interference with $t\bar{t}$ continuum

Top associated production potentially less prolific

$A/H \rightarrow t\bar{t} (l, ll_{OS} \text{ final states})$

Meticulous treatment of the signal model!

- Simple limit on μ not feasible \bigotimes $\mu S + \sqrt{\mu}I + B = (\mu - \sqrt{\mu})S + \sqrt{\mu}(S + I) + B$
- Signal generated with MadGraph (LO) with a dedicated provision to subtract the $B_{t\bar{t}}$ component: $S + I = (S + I + B_{t\bar{t}}) - B_{t\bar{t}}$
- Signal S and S + I simulations for individual $(m_{A/H}, \tan \beta)$ or $(m_{A/H}, \Gamma_{A/H})$ with event-by-event reweighting after detector simulation separately for H & Ahypothesis
- * *k*-factors applied affecting both shape & normalisation of the S + I.

<u>arXiv:2404.18986</u>

$A/H \rightarrow t\bar{t} (l, ll_{OS} \text{ final states})$

Multiple scenarios considered: 2HDM type-II, hMSSM, 2HDM+a, Simplified Generic $(m_{A/H}, \Gamma_{A/H}, g_{A/Ht\bar{t}})$

- * 1-lepton channel (exactly 1 e or $\mu p_T > 28$ GeV , $\geq 1b$ -jet): **11** Signal Regions, discriminant: m_{tt}
- merged topology (1 large-V R (re-clustered) jet $p_T > 200 \text{ GeV}, m > 100 \text{ GeV}, \ge 1b$ -jet)
- \blacktriangleright resolved topology (≥ 4 jets $p_T > 25$ GeV, ≥ 1 top), χ^2 -based $t\bar{t}$ reconstruction - further split into 10 SR's based on 1/2 *b*-jet & $|\cos \theta^*|$
- **2-lepton** channel (OS lepton pair, ≥ 2 jets, $\geq 1b$ jet, $m_{ll} > 15$ GeV, **5** SR's, discriminant: m_{llbb} $(E_T^{miss} > 45 \text{ GeV}, m_{ll} \neq m_Z)_{ee,\mu\mu}$ - further split into 5 $\Delta \phi_{II}$ SR's
- * Main systematic from $t\bar{t}$ background modelling (theory) LHCP 2024 04/06/2024

arXiv:2404.18986

$$A/H \rightarrow t\bar{t} (l, ll_{os} \text{ final states})$$

Non-standard statistical analysis! (for details see <u>talk from Nicola De Biase</u>)

Search stage: Fit $\sqrt{\mu}$ $(\mu - \sqrt{\mu})S + \sqrt{\mu}(S + I) + B$ for each mass/width hypothesis. **Goal**: potential rejection of $\mu = 0$ hyp.

***** Exclusion stage: $q = -2\ln(\mathcal{L}_1/\mathcal{L}_0)$ Goal: reject $\mu = 1$ hyp. against $\mu = 0$ one.

✤ Nonlinear dependence of *L* on $\sqrt{\mu}$! Disjoint exclusions possible. Full scan of H/A (*m*_{A/H}, tan β) or (*m*_{A/H}, *g*_{Att}, Γ_{A/H})!

Data found compatible with the SM prediction. Largest deviation for $m_A \approx 800 \text{ GeV}, \frac{\Gamma_A}{m_A} = 10\% \sqrt{\mu} = 4 @ 2.3\sigma$ 95% CL exclusions for the considered models extracted ($400 < m_{A/H} < 1400$)

$t\bar{t}A/H \rightarrow t\bar{t}t\bar{t}$ (l, ll_{OS} final states)

Not suffering from significant interference!

- SM $t\bar{t}t\bar{t}$ has been established by <u>ATLAS</u> & <u>CMS</u>! (featuring a mild excess)
- Difficult modelling of the dominant $t\bar{t}$ +jets background ← data-driven "flavour rescaling" (in 5j & 7j bins)
- NN binary classifier trained to discriminate data from MC - multidim. kinematics $(\mathbf{x}) \rightarrow w(\mathbf{x})$. Applied to MC on event-by-event basis
- Uncertainties dominated by the $t\bar{t}$ +jets modelling and modelling of the SM $t\bar{t}t\bar{t}$ process (both theory & data-driven corrections)
- GNN are trained on multiple input variables separately for 1L and 2LOS categories. LHCP 2024 04/06/2024 **b**8

ATLAS-CONF-2024-002

$t\bar{t}A/H \rightarrow t\bar{t}t\bar{t}$ (*l*, *ll*_{os} final states)

ATLAS-CONF-2024-002

Limits obtained from simultaneous fit to <u>GNN score</u> in the SR's and H_{T} in the CR's

<u>⊕JHEP 07 (2023) 203</u>

LHCP 2024 04/06/2024

Search for heavy CP even/odd scalar in cascade decays involving another scalar

CP even scalar R (CP odd A) decaying to a lighter scalar S (Z boson) and a heavy Higgs going to a ZZ pair

A scalar X decaying to a lighter scalar S and SM Higgs

$$R \rightarrow SH \rightarrow 4l + E_T^{miss}$$
$$A \rightarrow ZH \rightarrow 4l + X$$

Scenarios considered:

- (extended) 2HDM+S, S decays invisibly (DM portal!)
- > 2HDM-based baryogenesis; X stands for *ll/jj/inv*.
- * Selection: single/multi- lepton triggers, 2 SFOS leptons (μ or e) consistent with m_Z . FSR correction & m_Z constraint improve 4l mass resolution.
- *** 7** SR's defined by n_{jets} , n_{b-jets} and E_T^{miss} signific.
- Main background from $(q\bar{q}) ZZ$ production
- A dense grid of mass points generated, further proliferated by interpolation.
- * A simultaneous fit is performed on the m_{4l} distributions in the SR's.

 $R \rightarrow SH \rightarrow 4l + E_T^{miss}$ $A \rightarrow ZH \rightarrow 4l + X$

Results

- No significant excess of data over SM background observed.
- Limits were set on $m_R/m_H \& m_A/m_H$ plane under the NWA, with negligible dependence on m_S (fixed to 160 GeV)

Impact from Large Width Approx. also evaluated:

Width assumptions	Mass points [GeV]	Upper limits in the $\sigma(gg \rightarrow A)$ [fb]		Ratio w.r.t
i iui ussunptions	intes points [001]	Observed	Expected	Narrow width
Narrow width	$(m_A, m_H) = (320, 220)$	19.6	25.1	1.0
	$(m_A, m_H) = (1190, 600)$	4.8	3.5	1.0
$(\Gamma_A/m_A, \Gamma_H/m_H) = (15\%, 5\%)$	$(m_A, m_H) = (320, 220)$	31.5	36.2	1.4
	$(m_A, m_H) = (1190, 600)$	8.3	6.0	1.7
$(\Gamma_A/m_A, \Gamma_H/m_H) = (30\%, 10\%)$	$(m_A, m_H) = (320, 220)$	38.9	42.5	1.7
	$(m_A, m_H) = (1190, 600)$	8.9	6.6	1.9

arXiv:2401.04742

P. Brückman de Renstrom

 $X \to S(\to b\bar{b})H_{125}(\to \gamma\gamma)$

Scenarios considered:

- Generic search targeting 2HDM type models or SM extended by singlets with at least 2 DoF's.
- NWA is assumed throughout.
- Selection: di-photon triggers, 2 photon mass consistent with H₁₂₅ [120,130], exactly one b-jet (1b SR) or exactly 2 b-jets (2b SR)
- Main background ($\gamma\gamma$ +jets) normalised from $m_{\gamma\gamma}$ side bands
- ***** Discriminant:
- > 1b SR: PNN parameterised in (m_X)
- > 2b SR: PNN parameterised in (m_X, m_S)

P. Brückman de Renstrom

Data found compatible with the SM prediction. Largest deviation for (m_X, m_S) =(575,200) GeV @ local (gobal) $3.5(2.0)\sigma$ CMS excess @ (m_X, m_S) =(650,90) GeV, $3.8(2.8)\sigma$, <u>arXiv:2310.01643</u> not confirmed.

Search for a heavy scalar in the decay into a H_{125} pair

 Combining three recent searches for resonant di-Higgs production (complementary in the X mass coverage):

$X \rightarrow H_{125}H_{125}$

Results

- *bbbb* exploits both four *b*-tagged R=0.4 jets as well as two R=1.0 jets tagged by constituent track jets. Final variable: $m_{h\bar{h}h\bar{h}}$
- * $b\bar{b}\tau\tau$ exploits $\tau_{had}\tau_{had}$ and $\tau_{lep}\tau_{had}$ channels. Final variable: PNN score
- $b\bar{b}\gamma\gamma$ exploits high resolution of the $\gamma\gamma$ system. Final variable: $m_{\gamma\gamma}$
- ***** The upper limits on the resonant $\sigma(X \rightarrow hh)$ is extracted from a simultaneous fit of all signal categories.
- Limits interpreted in 2HDM type-1 & MSSM models.

[q] (*μμ* ← *χ*)α α(*X* → μμ)

10³

10²

Spin-0

 $b\bar{b}\tau^+\tau$

Data found compatible with the SM background prediction over the entire mass range 251 GeV to 5 TeV Largest excess seen @ 1.1 TeV with local (global) significance 3.3 (2.1) σ

SUMMARY

Ю

tan

- No new heavy scalar resonance confirmed so far.
- tt̄ and di-Higgs final states extend exclusions on 2HDMtype models in the low and intermediate tan β range

 New exclusions on generic models with at least two additional heavy (pseudo)scalars (2D scans)

THANK YOU

$X \to S(\to VV)H_{125}(\to \gamma\gamma)$ $\gamma\gamma + 1(2)l$

arXiv:2405.20926

- **Scenarios considered**:
- Generic search targeting 2HDM+S type models.
- Selection: di-photon triggers, 2 photon mass consistent with H₁₂₅ [120,130], exactly one (1*l*) or two leptons (2*l*), *b*-veto
- Further enhanced by BDT in the $\gamma\gamma$ WW SR.
- Main bacground ($\gamma\gamma$ +jets) normalised from $m_{\gamma\gamma}$ side bands
- ***** Discriminant: $m_{\gamma\gamma}$

 $A \rightarrow ZH \rightarrow l^+l^- + t\bar{t}$

- Motivated by: 2HDM-based baryogenesis $(m_A > m_H)$
- Selection: three high- p_T leptons (OSSF pair, μ or e, consistent with m_Z), ≥ 4 jets, 2 b-jets
- SR/VR's/CR's based on m_{ll} (Z) and $m_{t\bar{t}}$ (H sliding w.)
- Main background from $t\bar{t}Z$ events and leptonic $t\bar{t}$ events with a non-prompt third lepton.

	Regions				
Requirement	cc (CD)	I 2hi Zout (VP)	L3hi_Zin		Illo 7in (VP)
	55 (CK)		Hlo/Hhi(CR)	Hin (SR)	
Number of leptons	3				
$p_{\mathrm{T}}(\ell_1)$	> 27 GeV				
Number of jets	≥ 4				
Number of <i>b</i> -jets	2				
$\left \eta_{H ext{-cand}}^{ZH ext{-r.fr.}} ight $	$< 2.2 + 0.0004 \cdot m(t\bar{t})[\text{GeV}] - 0.0011 \cdot m(\ell^+ \ell^- t\bar{t})[\text{GeV}]$				
$p_{\mathrm{T}}(\ell_3)$	> 13 GeV > 7 GeV & < 13 GeV				> 7 GeV & < 13 GeV
Lepton flavour	$ee\mu/\mu\mu e$	e eee/eeµ/µµe/µµµ			
OSSF lepton pairs	0	≥ 1			
$ m_Z^{\text{cand}} - m_Z $	< 20 GeV	> 10 GeV & < 20 GeV < 10 GeV			
$ m(t\bar{t}) - m_H = m_H < 500 \text{ GeV}$		-	$> 0.32 \cdot m_H$	$< 0.32 \cdot m_H$	-
$m_H \ge 500 \text{ GeV}$	$> 0.24 \cdot m_H \qquad < 0.24 \cdot m_H$				

LHCP 2024 04/06/2024

$A \to ZH \to l^+ l^- + t \bar{t}$

JHEP 02 (2024) 197

- A simultaneous fit is performed to the $\Delta m = m(llt\bar{t}) m(t\bar{t})$ distribution in SR and event yields in the SS ($t\bar{t}$ norm.), HIo & Hhi ($t\bar{t}Z$ norm.) CR's.
- The result is limited statistically

No significant excess over SM observed The largest excess of local (global) significance 2.85 (2.35) σ observed for (m_A, m_H) = (650,450) GeV

$A/H \rightarrow t\bar{t} (l, ll_{os} final states)$

arXiv:2404.18986

LHCP 2024 04/06/2024

p22

 $R \rightarrow SH \rightarrow 4l + E_T^{miss}$ $A \rightarrow ZH \rightarrow 4l + X$

Signal region	$R \to SH \to 4\ell + E_{\rm T}^{\rm miss}$ and $A \to ZH \to 4\ell + X$					
SR1		$n_{\rm jets} = 0$	$p_{\rm T}^{4\ell} > 20 {\rm GeV}$	$E_{\rm T}^{\rm miss}$ significance >2.0		
SR2	$n_{b-jets} = 0$	$n_{1} > 1$	$p_{\rm T}^{4\ell} > 10 {\rm GeV}$	$E_{\rm T}^{\rm miss}$ significance > 3.5		
SR3		$n_{\rm jets} \ge 1$	$p_{\rm T}^{4\ell}$ < 10 GeV	$2.5 < E_{\rm T}^{\rm miss}$ significance < 3.5		
		$A \to ZH \to 4\ell + X$				
SR4		$n_{\rm jets} \ge 2$	$ m_{jj} - m_Z < 20 \text{ GeV}$			
SR5	$n_{b-jets} = 0$		$ m_{jj} - m_Z > 20 \text{ GeV}$			
SR6		$n_{\rm jets} = 1$				
SR7			$n_{b-jets} \ge$	1		

LHCP 2024 04/06/2024

 $X \to S(\to b\bar{b})H_{125}(\to \gamma\gamma)$

arXiv:2404.12915

LHCP 2024 04/06/2024

p24

Other related ATLAS results

CDM (2HDM+a) combination:

 $t\bar{t}A/H \rightarrow t\bar{t}t\bar{t}$ (ll_{SS} , ML final states)

 $X \rightarrow$ multilepton + *b*-jets

 $X \to HS \to VV\tau\tau$

EXOT-2019-26 HDBS-2020-03 HDBS-2022-44

EXOT-2018-64

Corresponding CMS results

$A/H \rightarrow t\bar{t}$	<u>HIG-17-027</u>	(36 fb ⁻¹)
$A \rightarrow ZH \rightarrow \tau \tau l l$	HIG-18-023	
$X \to SH_{125} \to b\overline{b}\gamma\gamma$	HIG-21-011	NEW
$X \to HY \to b\bar{b}b\bar{b}$	B2G-21-003	
$X \to HS \to b \overline{b} \tau \tau$	HIG-20-014	
$X \to HH \to b\bar{b}WW$	HIG-21-005	NEW
$X \rightarrow HH \rightarrow WWWW, WW\tau\tau, \tau\tau\tau\tau$	HIG-21-002	