Search for new massive scalars at CMS LHCP2024 (3-7 Jun 2024)

S. Konstantinou¹ on behalf of the CMS Collaboration

Rutgers University¹

04 June 2024

Introduction

Searches for heavy scalars are motivated by many BSM models including theories with extended Higgs sectors

- Minimal extension: two-Higgs-doublet models (2HDMs)
 - Introduce an adddional Higgs doublet
 - \blacktriangleright Predict 5 Higgs bosons: CP-even $h^0,\,H^0,$ CP-odd A, H^\pm
- ▶ Next-to-minimal extensions: 2HDM+Singlet, Higgs triplet, ...
- CMS is broadening the searches for new scalars
 - New signals, modern techniques, ...
 - Results are interpreted in the context of BSM models

This talk summarizes some of the latest CMS searches with Run II data:

$X^{\pm} ightarrow W^{\pm} \gamma$	CMS-PAS-EXO-21-017
$X \rightarrow \phi \phi \rightarrow 4 \gamma$	arXiv:2405.00834
$A \rightarrow Z(\ell \ell) H(t\bar{t})$	CMS-PAS-B2G-23-006
$\mathrm{H}^{\pm} ightarrow \mathrm{H}^{0}\mathrm{W}$, $\ell au_{\mathrm{h}}(au_{\mathrm{h}})$	JHEP09(2023)032
$W\phi, Z\phi, t\bar{t}\phi$ (X ϕ), multilepton	arXiv:2402.11098

$X^{\pm} ightarrow W^{\pm} \gamma \,\, { m CMS-PAS-EXO-21-017}$

 $W^{\pm}\gamma$ signatures in final states with ℓ , γ , p_T^{miss}

• Search for bump in data m_T

Main bkg: $V\gamma$, V/γ +jets, tt

$$m_{T}^{2} = \left(E_{T}\left(\gamma\right) + E_{T}\left(\ell\right) + p_{T}^{miss}\right)^{2} - |\vec{p}_{T}(\gamma) + \vec{p}_{T}(\ell) + \vec{p}_{T}^{miss}|^{2}$$

Background: From data, with analytic functions

138 fb⁻¹ (13 TeV) 138 fb⁻¹ (13 TeV) CMS Preliminary E veuts / 50 GeV 10⁴ 10² < Events / GeV > CMS Preliminary Data 500GeV, Γ_x/m_x=0.01% 500GeV. Γ./m.=5% 500GeV, Γ_x/m_x=0.0 10 1400GeV, Γ./m.=0.01% 00GeV L./m.=5% Muon Channel 10 10 10-2 10-3 10 Data / MC 3×10² 10^{3} 2×103 m, [GeV] 2500 m_r [GeV]

Background-only fit

$p_0 x^{\sum_{i=1}^{N} p_i \log^{i-1}(x)},$ $p_0 \frac{(1-x)^{p_1}}{x^{\sum_{i=2}^{N} p_i \log^{i-2}(x)}},$ $p_0 e^{p_1 x} x^{\sum_{i=2}^{N} p_i \log^{i-2}(x)},$

$X^{\pm} ightarrow W^{\pm} \gamma \,\, { m CMS-PAS-EXO-21-017}$

Combination with CMS hadronic results

Excess at 1.58 TeV not confirmed

Combination - narrow signal

Hadronic - PLB 826(2022) 136888

$X^{\pm} ightarrow W^{\pm} \gamma \,\, { m CMS-PAS-EXO-21-017}$

$\mathbf{X} ightarrow \phi \phi ightarrow 4 \gamma \,\, \mathrm{arXiv:} 2405.00834$

Extended Higgs sectors with X, ϕ scalars

- $X o \phi \phi$ kinematically allowed for $m_{\phi} < 2 m_{bb/cc}$
- Highly boosted ϕ for $m_X >> m_{\phi}$ merged diphotons

Merged diphoton ($\Gamma = \gamma \gamma$) reconstruction

 Convolutional neural network (CNN) using clusters from ECAL

Solo X Charles A Charles A

- Classification: " $\gamma\gamma$ ", " γ ", "hadron"
- Regression: m/E of the $\gamma\gamma$ clusters

$\mathbf{X} ightarrow \phi \phi ightarrow 4 \gamma \,\, \mathrm{arXiv:} 2405.00834$

Extended Higgs sectors with X, ϕ scalars

- $X o \phi \phi$ kinematically allowed for $m_{\phi} < 2 m_{bb/cc}$
- Highly boosted ϕ for $m_X >> m_{\phi}$ merged diphotons

Analysis strategy

- Two Γ clusters (CNN_{γγ})
- ► Search for excess in data M_{ΓΓ}
- Data binned in slices of $\alpha^{reco} = \hat{m}_{\Gamma}/M_{\Gamma\Gamma}$

Background estimation

► Fit of falling M_{ΓΓ} in data

Fit of background + signal to data

► Largest Excess at $m_X = 720$ GeV, $m_{\phi}/m_X = 7\%$ ($m_{\phi} \approx 5$ GeV): 3.57 σ local/ 1.07 σ global significance

m_x [GeV]

$\mathrm{A} ightarrow \mathrm{Z}(\ell\ell)\mathrm{H}(\mathrm{t}\bar{\mathrm{t}})$ CMS-PAS-B2G-23-006

Search for signatures with $Z \to \ell \ell$ and fully hadronic $t \bar t$

• Event categorization based on ℓ flavor, n_{jet} , n_{bjet} , $m_{\ell\ell}$

- **Fit discriminant:** $p_T^Z \times \Delta m$
- $\blacktriangleright p_T^Z = p_T^{\ell\ell}$
- \blacktriangleright $\Delta m = m_{
 m t\bar{t}Z}$ - $m_{
 m t\bar{t}} pprox m_A$ m_H
- Better experimental resolution compared to m_{ttz} and m_{tt}
- Concentric elliptical bins in $(\Delta m, p_T^Z)$

- SR: signal regions
- Z sidebands: $t\bar{t}$ normalization
- Ob CR: DY normalization

$\mathrm{A} ightarrow \mathrm{Z}(\ell\ell)\mathrm{H}(\mathrm{t}\bar{\mathrm{t}})$ CMS-PAS-B2G-23-006

Search for signatures with $Z \to \ell \ell$ and fully hadronic $t \bar t$

• Event categorization based on ℓ flavor, n_{jet} , n_{bjet} , $m_{\ell\ell}$

- **Fit discriminant:** $p_T^Z \times \Delta m$
- $\blacktriangleright p_T^Z = p_T^{\ell\ell}$
- $\blacktriangleright \Delta m = m_{\mathrm{t\bar{t}Z}} \text{-} m_{\mathrm{t\bar{t}}} \approx m_{A} \text{-} m_{H}$
- Better experimental resolution compared to m_{tt̄Z} and m_{tt̄}
- Concentric elliptical bins in $(\Delta m, p_T^Z)$

 $P_{T}^{2} \times \Delta m \text{ bins}$ The second secon

$\mathrm{A} ightarrow \mathrm{Z}(\ell\ell)\mathrm{H}(\mathrm{t}\bar{\mathrm{t}})$ CMS-PAS-B2G-23-006

Simultaneous fit of signal and background

Model-independent observed limits

Interpretation in type-II 2HDM

- No significant signal excess observed
- Results do not confirm the excess reported by ATLAS @ $(m_A, m_H) \approx (650, 450)$ GeV

Exclusion region vs tan β

${ m H}^{\pm} ightarrow { m H}^{0}{ m W}$, $\ell au_{ m h}(au_{ m h})$ JHEP09(2023)032

Search for $H^{\pm} \rightarrow H^0 W$ in ditau final states: $e\tau_h$, $\mu \tau_h$, $e\tau_h \tau_h$, $\mu \tau_h \tau_h$

 $\ell \tau_{\rm h}$: Large \mathcal{BR}

- ▶ $1 \ell + 1 \tau_h$ (SS or OS) ▶ 1ℓ , $2 \tau_h$ (OS)

 \blacktriangleright large p_{T}^{miss}

Resolved t candidates: custom MVA (t^{res})

 $\ell \tau_{\rm h} \tau_{\rm h}$: Clean signature

- ▶ \geq 3 jets (\geq 1 b jet) ▶ \geq 2 jets (\geq 1 b jet)
 - \blacktriangleright large p_{T}^{miss} , S_{T}

Dominant background ($t\bar{t}$, V+jets) can be decomposed to:

- Genuine $\tau_{\rm h}$ < SIMULATION
- ℓ misidentified as $\tau_{\rm h}$ $(\ell \rightarrow \tau_{\rm h})$ < SIMULATION
- ▶ jet misidentified as τ_h $(j \rightarrow \tau_h)$ < DATA DRIVEN

 $j \rightarrow \tau_{\rm h}$ background measured from data with fake factor method

- Estimate $\tau_{\rm h}$ fake rates in control regions
- Fake rates applied in a region with anti-isolated $\tau_{\rm h}$

10/16

Signal extraction:

$\ell au_{ m h} au_{ m h}$: H^{\pm} transverse mass (m_T^{H^{$\pm}})</sup></sup>$

 $\blacktriangleright m_T^{\mathrm{H}^{\pm}} = m_T(\tau_h^+, \tau_h^-, \ell, \nu_\ell)$

$\ell \tau_h$: BDT event discriminant

- Combinatorial-jet background goes into $m_T^{H^{\pm}} = m_T(\ell, \tau_h, j_1, j_2, \nu_\ell)$
- Enhance sensitivity with MVA
- ▶ 12 inputs including m_T , $N_{t^{res}}$, p_T^{miss}

Simultaneous fit to data in all SRs:

- $\ell \tau_{\rm h} \tau_{\rm h}$ most sensitive; $\ell \tau_{\rm h}$ improves sensitivity by 20-35%
- First search of the process at the LHC

$W\phi, Z\phi, t\bar{t}\phi$ (X ϕ), multilepton arXiv:2402.11098

13/16

Dilepton resonances in events with 3ℓ , 4ℓ

• Seven final states based on the number of light ℓ , τ_h

Model-independent selections to constrain SM background

► N_b , OSSF_n, M_{OSSF} , p_T^{miss} , M_T

Control regions (CR) and Signal regions (SR)

Main background:

• WZ, ZZ, $t\bar{t}Z$, $Z\gamma$:

from simulation, normalized in control regions

► MisID ℓ:

Data-driven using the matrix method

$W\phi, Z\phi, t\bar{t}\phi$ (X ϕ), multilepton arXiv:2402.11098

Analysis strategy

- $\blacktriangleright X\phi \rightarrow e^+e^-/\mu^+\mu^-:$
 - low- (high-) mass ϕ with mass below (above) the Z mass
 - ► Fit discriminant: min/max M_{ℓℓ}
- $\blacktriangleright \ \mathsf{X}\phi \ \rightarrow \ \tau^+\tau^-:$
 - Search for $e\mu$, $\ell\tau_h$, $\tau_h\tau_h$ decays
 - Fit discriminant: min $M_{e\mu}$, $M_{\ell\tau_h}$, $M_{tau_h\tau_h}$

$W\phi$, $Z\phi$, $t\bar{t}\phi$ (X ϕ), multilepton arXiv:2402.11098

Model-independent results: scalar, pseudoscalar, H-like ϕ

Model-dependent results: Dilaton-like, Axion-like, H-like ϕ

Summary

Presented latest searches for additional scalar bosons with CMS

- New unexplored signal signatures
- Advanced techniques, event categorization
- ► No evidence for BSM physics observed
- More results to come with Run II and Run III data!

BACKUP

17	/16
----	-----

Selections	Electron channel	Muon channel
Lepton $p_{\rm T}$	> 35 GeV	> 30 GeV
$m_{\ell\gamma}$ mass	$ m_{\rm e\gamma} - 91.0 > 20 {\rm GeV}$	_
Lepton ID	Tight	
Photon $p_{\rm T}$	$0.4m_{ m T} < p_{ m T}(\gamma) < 0.55m_{ m T}$	
$p_{\rm T}^{\rm miss}$	$p_{ m T}^{ m miss} > 40{ m GeV}$	
Photon η	$ \eta < 1.44$	
b jet veto	0 medium-tagged b jets	

$X^{\pm} \rightarrow W^{\pm}\gamma$, hadronic PLB 826(2022) 136888

- W-tagged jet $(\tau_2/\tau_1, m_{SD})$
- Search for bump in data X reconstructed mass: $m_{J\gamma}$

Fit of background function + signal shape to data

Background-only fit

 N flavors of new Dirac fermion quarks that receive their mass from the X vev f