Exotic Higgs Decays with ATLAS

Imma Riu (IFAE-BIST Barcelona) on behalf of the ATLAS Collaboration LHCP conference Boston (US) 6 June 2024

Introduction

- Higgs measurements today:
 - Main production and decay modes observed
 - Excellent agreement with the SM prediction
- Current constraints:
 - From combined fits to the SM Higgs coupling:
 - BR_{inv} (H \rightarrow invisible) < 13%
 - BR_u (H \rightarrow undetected) < 12%
- Higgs as a portal to BSM:
 - New physics could couple to the SM through

ATLAS, Nature 607, 52 (2022)

Imma Riu (IFAE Barcelona)

Non-SM decays of the Higgs boson

• Example of non-SM Higgs decays: H→ aa:

- Inspired by 2HDM+S, which introduces a mediator in a light singlet (pseudo)scalar
- Inherits Yukawa-like couplings from mixing with the Higgs doublets
- Couplings proportional to mass. Large BR to b's and τ 's
- Many analyses have already been performed (see <u>ATL-PHYS-PUB-</u> <u>2021-008</u>)
- In this talk, will describe recent analyses of full Run 2:
 - $H \rightarrow aa \rightarrow \gamma\gamma \gamma\gamma$
 - $H \rightarrow Za \rightarrow Z\gamma\gamma$
 - $H \rightarrow D^{*0}\gamma$
 - $H \rightarrow \gamma \gamma_d$

See also Shigeki Hirose's talk on Monday

Search for $H \rightarrow aa \rightarrow 4\gamma$ - introduction

arXiv:2312.03306 (Dec 2023)

Introduction:

- Probe Higgs decays into 2 axion-like particles (ALP)
- Model could explain the $(g-2)_{\mu}$ discrepancy
- First time long-lived decays are explored
- Signature kinematics:
 - Dependent on m(a) and C_{avy} coupling:
 - Low m(a) : collimated $\gamma\gamma$ reconstructed as one γ
 - Small C_{avv} : displaced vertices

Analysis strategy:

- -2γ triggers and various dedicated NNs used:
 - for rejecting fake photons
 - to classify single and merged γ 's
 - to select the correct γ pairing in 3S, 4S
- Signal regions for single (S) and merged (M) γ 's:
 - $\geq 2\gamma$: 2S, 1S1M, 2M, 3S, 4S

Real vs Fake photons NN output

Single vs merged γ 's NN output events **LAS** Simulation √s=13 TeV, NN-Classifier s=13 TeV, NN-Classifier Real vs. Fake Photons Single vs. Merged Photons đ 04 Merged Photons (H→ aa, m_=0.5 GeV, C_==1) ⁻raction rged Photons (H→ aa, m_=0.5 GeV, C_au=1) Merged Photons (H→ aa, m_=1.0 GeV, C___=1) Fake Photon Candidates (Data Single Photon $(H \rightarrow \gamma \gamma)$ 0.1 0.05 0.8 0.9 0.3 0.4 0.5 0.6 0.7 0.6 Neural network output Neural network output

6 June 2024

Exotic Higgs Decays with ATLAS

0.1 0.2

ATLAS

đ

0.2

4/16

Search for $H \rightarrow aa \rightarrow 4\gamma$ – analysis

• Search for long-lived decays:

- m(a) < 3.5 GeV: 2S, 1M1S, 2M are most sensitive
- m(a) > 3.5 GeV: 3S, 4S are the most sensitive
- Data-driven background using sideband fits in the SR w/ m(a)-dependent sel. in m_{inv}^{reco} of all γ 's and m_{a}^{reco}
- Fit of m_{inv}^{reco}

- Only considered for m(a) > 5 GeV and used only $4S_p$
- Selection:
 - Strict requirements on PID to reject fake photons
 - Tight selection around m_{inv}^{reco}, m(a)-dep. for m_a^{reco}
- Data-driven background 2D area-scaling sideband yields
- Single bin fit in the m_{inv}^{reco} versus m_a^{reco} plane

m_{inv}^{reco} in the 4S region 3.5 GeV < m(a) < 10 GeV

m_{inv}^{reco} vs m_a^{reco} in the 4S_p region

Search for $H \rightarrow aa \rightarrow 4\gamma$ – analysis

• Search for long-lived decays:

- m(a) < 3.5 GeV: 2S, 1M1S, 2M are most sensitive
- m(a) > 3.5 GeV: 3S, 4S are the most sensitive
- Data-driven background using sideband fits in the SR w/ m(a)-dependent sel. in m_{inv}^{reco} of all γ 's and m_{a}^{reco}
- Fit of m_{inv}^{reco}

- Search for prompt decays:
 - Only considered for m(a) > 5 GeV and used only $4S_p$
 - Selection:
 - Strict requirements on PID to reject fake photons
 - Tight selection around m_{inv}^{reco}, m(a)-dep. for m_a^{reco}
 - Data-driven background 2D area-scaling sideband yields
 - Single bin fit in the m_{inv}^{reco} versus m_a^{reco} plane

Number of data and estimated background events in the signal regions

Search for $H \rightarrow aa \rightarrow 4\gamma$ – results

Upper limits on BR(H \rightarrow aa \rightarrow 4 γ) provided depending on C_{ayy}: more stringent than previous results

Excluded much of the remaining parameter space that could explain the (g-2), discrepancy

.4γ)

Imma Riu (IFAE Barcelona)

Search for $H \rightarrow Za$, $a \rightarrow \gamma \gamma$ – strategy

Phys. Lett. B 848 (2024) (Dec 2023)

- Introduction:
 - Studied ggF and VBF production modes (separately)
 - Search for new resonances with leptonic Z decay
- Analysis strategy:
 - Split into two regimes, based on the angular separation of the photons

Events / (10 GeV)

Data / SM

- Resolved category m(a) > 2 GeV:
 - *−* ≥2*γ*
 - $-0.96 < \Delta R(\gamma \gamma) p_{T}^{\gamma \gamma} / (2m^{\gamma \gamma}) < 1.2$
 - 90% Z+jets, 10% Z+γ
- Merged category m(a) < 2 GeV:
 - Showers reconstructed as a single γ
 - 110 < m(Ζγ) < 130 GeV
 - E_{ratio} > 0.8 (discriminates γ and jets)
 - 25% Z+jets, 75% Z+γ

$m_{Z\gamma}$ for the merged category

6 June 2024

Exotic Higgs Decays with ATLAS

Search for $H \rightarrow Za$, $a \rightarrow \gamma \gamma$ – analysis

• Resolved category:

- Data-driven background parameterized with an analytic function derived in a CR
- Fit of the m($\gamma\gamma$) invariant mass distribution

- Merged category:
 - Background estimated from simulation with shapes corrections derived from a CR
 - Fit of the $\Delta R(Z\gamma)$ in the SR

Search for $H \rightarrow Za$, $a \rightarrow \gamma \gamma$ – results

• Results:

- Broad range of m(a) covered: from 0.1 to 33 GeV
- − Upper Limits on BR(H→Za, $a \rightarrow \gamma \gamma$) : ~1%/<0.1%

- Interpretation in the context of Axion-Like Particles:
 - Sensitivity to short-lived axions
 - Very complementary to existing bounds

6 June 2024

Imma Riu (IFAE Barcelona)

Exotic Higgs Decays with ATLAS

LHCP conference

Higgs decays to flavoured mesons – introduction

arXiv:2402.18731 (Feb 2024)

- Introduction:
 - Radiative Higgs decays to flavoured mesons can probe flavor changing Yukawa interactions
 - Examples are $H \rightarrow (K^{*0}, D^{*0}, B^{*0}, B_S^{*0}) \gamma$
 - $H \rightarrow D^{*0}\gamma$ is interesting as BR $\sim O(10^{-27})$ in the SM
 - Almost all D^{*0} decay to $D^0\pi$ or $D^0\gamma$
 - Target the decay $D^0 \rightarrow K^+\pi^-$ (BR ~4%)
- Analysis:
 - Full decay chain: $H \rightarrow D^{*0}\gamma \rightarrow D^{0}\gamma \gamma \rightarrow K^{+}\pi^{-}\gamma \gamma$
 - Two isolated tracks recoiling against an isolation photon
 - No attempt to reconstruct the soft photon
 - Used dedicated triggers requiring two tracks and a specific range of its invariant mass
 - Exploited displaced meson decay vertex to reduce backgrounds

$H \rightarrow D^{*0}\gamma$ analysis – results

• Background:

- Dominated by γ +jet and multi-jet processes
- Used data-driven finely binned Higgs mass templates

Invariant mass of the Higgs, $m(K\pi\gamma)$, for signal GeV 2.4 TLAS Simulation $H \rightarrow D^*\gamma$ 2.2 √s = 13 TeV, 136.3 fb⁻¹ Simulated Events 0.5 2.0 Analytical Fit Kπγ Candidates / 1.8È 1.6E .4E .2 .0 0.8 0.6 0.4⊧ 0.2⊦ 0.0 115 120 125 130 135 105 110 m_{Kπν} [GeV]

- Fit:
 - Signal extracted with a likelihood fit to $m_{K\pi\gamma}$
 - Background modelling uncertainties dominant

Post-fit invariant mass of the Higgs

$H \rightarrow D^{*0}\gamma$ analysis – limits

ATL-PHYS-PUB-2023-004

Search limited by statistics

Channel	Mass range	Observed (Expected)	H signal
	[GeV]	background	$\mathcal{B}=10^{-3}$
$H \rightarrow D^* \gamma$	116–126	$203 (214.8 \pm 5.5)$	25.4 ± 2.0

	95% CL upper limit	
	Expected	Observed
$\mathcal{B}\left(H ightarrow D^{*0} \gamma ight)$	$\left(1.2^{+0.5}_{-0.3} ight) imes10^{-3}$	$1.0 imes10^{-3}$
$\mathcal{B}\left(Z ightarrow D^{0}\gamma ight)$	$\left(3.4^{+1.4}_{-1.0} ight) imes10^{-6}$	$4.0 imes10^{-6}$
$\mathcal{B}\left(Z ightarrow\mathcal{K}_{S}^{0}\gamma ight)$	$\left(3.0^{+1.3}_{-0.8} ight) imes10^{-6}$	$3.1 imes10^{-6}$

Upper limits on BR($H \rightarrow meson + \gamma$)

The analysis includes a search for $Z \rightarrow D^0 \gamma$ and $Z \rightarrow K^0_s \gamma$ decays, improving the LHC-b limit

Complementary to an extensive programme of H and W/Z boson exclusive decays in ATLAS

6 June 2024

Exotic Higgs Decays with ATLAS

Search for dark photons : $H \rightarrow \gamma \gamma_d$

• Introduction:

- Dark Higgs Vector Portal:
 - U(1) gauge boson: visible photon, γ
 - + U(1)_D gauge boson: massive (or massless) dark photon, $\gamma_{\rm d}$
- Search for dark photons γ_d from Higgs boson decays in various production modes

• Analyses:

- **ZH production** (*JHEP 07 (2023) 133*)
 - ee or $\mu\mu$, one isolated γ and $\text{E}_{\text{T}}^{\text{miss}}$
 - Fake E_T^{miss} (from data)
 - Top, $e \rightarrow \gamma$, VV γ (from CRs in the fit)
 - BDT response as discriminant
- VBF production (EPJ. C 82 (2022) 105)
 - E_{T}^{miss} , 2 VBF jets, one isolated γ
 - W γ +jets, Z γ +jets (from CRs in the fit)
 - Fit of $m_T(\gamma, E_T^{miss})$ as discriminant

ZH production

Post-fit BDT distribution for the SR

Fake E^{miss} tt/tt+γ/single t

🔲 ₩γ

- ZH(γγ_) 20 GeV ---- ZH(γγ_) 40 GeV

···· ZH(γγ_)

√s = 13 TeV, L = 139 fb⁻¹

-SR, ee+µµ, Post-fit

H SM tota

10

10

10-

0.5

0

0.2 0.3 0.4 0.5 0.6 0.7

Data/Bkg

Post-fit $m_T(\gamma, E_T^{miss})$ distr. for the SR

6 June 2024

Imma Riu (IFAE Barcelona)

Exotic Higgs Decays with ATLAS

Combination of ZH and VBF $H \rightarrow \gamma \gamma_d$

arXiv:2406.01656 (Jun 2024)

Combination of the ZH and VBF channels has been performed and is shown at LHCP for the first time

 α_d versus ξ exclusion contours

 $BR(H \rightarrow \gamma \gamma_d)$ upper limits per channel & combined

Interpretation in a minimal simplified model consisting of one left-doublet and one right-singlet of the SU(2), Partly excluding phase space in the 2D Plane of the mixing parameter ξ versus the fine structure constant α_d

6 June 2024

0.8

0.9

 α_{d}

VFI

 $H \rightarrow \gamma \gamma_{d}$ Observed 95% CL

H→inv Observed 95% CL PLB 842 (2023) 137963

 $H \rightarrow \gamma \gamma$ ATLAS measurement

 $BR(H_{125} \rightarrow \gamma \gamma) = 0.247^{+0.022} \gamma$ Nature 607 (2022) 52

 $H \rightarrow \gamma \gamma$ SM prediction

arXiv:1610.07922

 $BR(H_{125} \rightarrow \gamma \gamma) = 0.227\%$

VBE-ZH combination

Summary and conclusions

- Using the full Run 2 data, we continue exploring exotic decays of the Higgs boson probing new phase spaces
- Shown in this talk:
 - Recent searches for Axion-Like-Particles including long-lived decays
 - Recent searches for flavour-changing decays of the Higgs boson
 - Combination of searches for dark photons
- More analyses using the full Run 2 data together with Run 3 data are to be expected in the near future
 - New production and decay channels will become available
- Stay tuned!

BACKUP

$H \rightarrow aa \ searches - summary \ plots$

ATL-PHYS-PUB-2021-008 (Mar 2021)

Limits on BR(H \rightarrow aa) assuming a particular 2HDM+S model predicting BR(aa \rightarrow xx yy)

arXiv:1312.4992 arXiv:1802.02156

Nice complementarity of searches, probing different tanβ phase space