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The four Portals to Light New Physics

Four portals to Light New Physics:

Scalar (spin O)

Pseudo-scalar (spin O)

Axions or
Axion-Like-Particles (ALPs)

Vector (spin 1)
Dark Photon

Fermion (spin %)
Heavy Neutral Leptons (HNLs)
The four Horsemen (SM-apocalypse)

A. Durer, MFA Boston [See the Mendaysession formorelightiNEZ]
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https://indico.cern.ch/event/1253590/sessions/532511/#20240603
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The Seesaw Mechanism
How Heavy are HNLs?

The Seesaw Lagrangian Neutrino masses

c\ are extremely small
Lol vg) 0 mpy (v Y
2 L R m% 0 VR
m, < 0.8eV
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How do HNLs interact with the SM?

Minimal Renormalizable
Interactions

The only renormalizable interactions are
the Yukawa couplings:

EaﬁYaiVRi

Juraj Klari¢
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How do HNLs interact with the SM?

Minimal Renormalizable
Interactions

* The only renormalizable interactions are
the Yukawa couplings:

EaHYaiVRi
— VL, <H>YaiVRi = VUL, MpVR

After Electroweak Symmetry
Breaking

« HNL mass eigenstates are a mixture of
VR and VL

T . c
N; ~vg, +0;,vr.

Juraj Klari¢

12



How do HNLs interact with the SM?

Mlnlmal_ Renormalizable Beyond Minimal Interactions
Interactions
. : :  HNLs are a part of a light hidden sector,
« The only renormalizable interactions are e.g. LRSM...
the Yukawa couplings:

. . . )
LaHYailjRi Other particles present e.g. WR ; 7

— VL, <H>YaiVRi = VUL, MpVR
After Electroweak Symmetry
Breaking

 HNL mass eigenstates are a mixture of
VR and VL

T . c
N; ~vg, +0;,vr.
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The parameter space of the minimal low-scale
seesaw model
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[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]
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The parameter space of the minimal low-scale
seesaw model

101 10°
M [GeV]
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The parameter space of the minimal low-scale
seesaw model

; LHC prompt

U2 = 0,]* = | (mp M) |

al
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[see the talks by Frattari, Portales, Schaarschmidt,
Knolle, Lunerti, Henry and Bird] [figure adapted from Snowmass WPs 2203.08039 and 2203.05502]
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https://indico.cern.ch/event/1253590/contributions/5814184/
https://indico.cern.ch/event/1253590/contributions/5814308/
https://indico.cern.ch/event/1253590/contributions/5814317/
https://indico.cern.ch/event/1253590/contributions/5814360/
https://indico.cern.ch/event/1253590/contributions/5838223/
https://indico.cern.ch/event/1253590/contributions/5838224/
https://indico.cern.ch/event/1253590/contributions/5838225/

The parameter space of the minimal low-scale
seesaw model

UZ; = |0ui]” = ’(mDMJ\_;) ’2

al

U =) U2 U?>m,/M

107
[see the session on future facilities] M [GeV]

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]
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The parameter space of the minimal low-scale
seesaw model

UZ; = |0ui]” = ’(mDMJ\_;) ’2

al

U =) U2 U?>m,/M
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[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]
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I_l N LS a [ d th e BaryonAsymmetrv of the U niverse

» Three [Sakharov ‘67]
conditions:

1. Baryon number violation
— sphaleron processes v
2. Cand CP violation
— HNL decays and oscillations v

3. Deviation from equilibrium

-  freeze-in and freeze-out of HNLs \/

Juraj Klari¢ 21


http://dx.doi.org/%2010.1070/PU1991v034n05ABEH002497

What does leptogenesis tell us about HNL masses?

Juraj Klari¢
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What does leptogenesis tell us about HNL masses?

Thermal leptogenesis
[Fukugita/Yanagida ‘86]

Juraj Klari¢
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What does leptogenesis tell us about HNL masses?

Davidson-Ibarra ‘02

Thermal leptogenesis
[Fukugita/Yanagida ‘86]
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What does leptogenesis tell us about HNL masses?

Davidson-Ibarra ‘02

Flavoured

leptogenesis

[Endoh et. al. ‘03]
[Pilaftsis/Underwood ‘O5]

[Abada et. al. ‘06]
[Nir et. al. ‘06]

Thermal leptogenesis
[Fukugita/Yanagida ‘86]

Juraj Klari¢
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What does leptogenesis tell us about HNL masses?

Davidson-Ibarra ‘02

Flavoured
leptogenesis

Resonant [Endoh et. al. ‘03]
leptogenesis [Pilaftsis/Underwood '05]
[Liu/Segre ‘93] [Abada et. al. ‘06]

[Pilaftsis ‘97] [Nir et. al. ‘06]

[Pilaftsis/Underwood ‘O4] .
Thermal leptogenesis

[Fukugita/Yanagida ‘86]
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What does leptogenesis tell us about HNL masses?

Leptogenesis via

oscillations
[Akhmedov/Rubakov/

Smirnov ‘98]
[Asaka/Shaposhnikov ‘05]

Davidson-Ibarra ‘02

Flavoured
leptogenesis

Resonant [Endoh et. al. ‘03]
leptogenesis [Pilaftsis/Underwood ‘05]
[Liu/Segre ‘93] [Abada et. al. ‘'06]

[Pilaftsis ‘97] [Nir et. al. ‘06]

[Pilaftsis/Underwood ‘O4] .
Thermal leptogenesis

[Fukugita/Yanagida ‘86]
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What does leptogenesis tell us about HNL masses?

Davidson-Ibarra ‘02

Flavoured
leptogenesis

il Resonant [Endoh et. al. ‘03]
Leptog,en?S"S via leptogenesis [Pilaftsis/Underwood ‘05]
oscillations [Liu/Segre ‘93] [Abada et. al. ‘06]
[Akhgwedov/agté?kov/ [Pilaftsis ‘97] [Nir et. al. ‘06]
mirnov Pilaftsis/Und d'04 :
[Asaka/Shaposhnikoy 05] | | laftsis/Underwood (04 Thermal leptogenesis
<+ [Fukugita/Yanagida ‘86]
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The parameter space of leptogenesis

* With 2 HNLs |leptogenesis is
}:\)/(I)syble for all masses above 100

° Leptogen65|5 s possible in the entire
experlmenta F}/ accessible parameter
space for 3

* Both vanlshlngc(no additional
interactions) and thermal (high-scale
additional interactions) leptogeneses
possible

. LEFtogenesis within reach of HL-

) ﬁh complementarity between
|ders and dedicated LLP S (S UL 1

S earches M [GeV]

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]
. . lleptogenesis bounds from JK/Timiryasov/Shaposhnikov 2103.16545
Juraj Klari¢ and Drewes/Georis/JK 2106.16226 ] 3
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Sakharov conditions at colliders g

Can we test the Sakharoy °© Sehalerons processes are
extremely suppressed at T~ 0

conditions at colliders? GeV

* |nthe SM B-L is conserved:
lepton number violation

* CPviolation in HNL decays is
challenging - but we could
measure CPV in v - oscillations

1. Baryon number violation
- sphaleron processes

2.C and CP violation

- HNL decays and oscillations

3. Deviation from equilibrium

- freeze-in and freeze-out of HNLs

Juraj Klari¢

The equilibration rate of HNLs
is directly probed by measuring
their couplings & branching
ratios

32



Deviation from Equilibrium:
HNL branching ratios

 HNL branching ratios are highly
constrained by the measured
parameters in the minimal model
(2 HNLs)

[Snowmass white paper 2203.08039]

e |eptogenesis imposes further
constraints on the branching ratios

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK 1710.03744]

 Branching ratios become even more
predictive when combined with
Flavor and CP symmetries

[Drewes/Georis/Hagedorn/JK 24xx xxxx]
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Deviation from Equilibrium
HNL branching ratios
« HNL branching ratios are highly
constrained by the measured

parameters in the minimal model
(2 HNLs)

[Snowmass white paper 2203.08039]
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Lepton Number Violation

100

[Drewes/Klose/JK 1907.13034]

In low-scale seesaw mechanisms HNLs
preserve approximate B—L symmetry

LNC only for I'> A M

Absence of fine tuning implies lower
bound on HNL mass splitting A M >Am,

Prompt decays can be sensitive to
decoherence effects

For tiny mass splittings HNL oscillations
between LNV and LNC processes
possible

36
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[

Lepton Number Violation

Antusch/Hajer/Rosskopp 2308.07297

]

In low-scale seesaw mechanisms HNLs
preserve approximate B—L symmetry

LNC only for I'> A M

Absence of fine tuning implies lower
bound on HNL mass splitting A M >Am,

Prompt decays can be sensitive to
decoherence effects

For tiny mass splittings HNL oscillations
between LNV and LNC processes
possible
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Lepton Number Violation

e |nlow-scale seesaw mechanisms HNLs
2579 events, My =1 GeV, 6M=4-10"7 eV preserve approximate B—L symmetry

p.ny inferred using LightGBM with accuracy 0.639
o | e [NConlyforI™>AM

A » Absence of fine tuning implies lower
"""" S TN T T bound on HNL mass splitting A M >Am,

B
=
|

Q
|
>
=
]

o

e Prompt decays can be sensitive to
decoherence effects

s o For tiny mass splittings HNL oscillations
promer time T[] between LNV and LNC processes
possible

[Tastet/Timiryasov 1912.05520]
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Indirect LNV:

neutrinoless double £ decay

e Smoking gun signature of
LNV

e GeV-scale HNLs can
modify the naive
expectation

e Suppression of the 1O
signal implies light HNLs

e Target region testable with
HL-LHC, SHIP & FCC-ee

Juraj Klari¢

Excluded by KamLAND-Zen,
GERDA, EX0-200, CUORE
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Indirect LNV:

neutrinoless double £ decay

e Smoking gun signature of
LNV

e GeV-scale HNLs can
modify the naive
expectation

e Suppression of the 1O
signal implies light HNLs

1000

e Target region testable with
HL-LHC, SHIP & FCC-ee

M (MeV)

[Fig from de Vries, Drewes, Georis, JK, Plakkot 24XX.XXXX]
[figures from 1910.04688]
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Conclusions

HNLs can offer a minimal solution to the origins of neutrino
masses and the baryon asymmetry of the Universe

* the existence of HNLs is already being tested at existing
experiments

* excellent synergy between high-energy and high-intensity
experiments!

* |leptogenesis is a viable baryogenesis mechanism for all HNL
masses above O(100) MeV scale

* Indirect probes can lead to clear target regions for HNLs
* HNLs have a very rich phenomenology

Juraj Klari¢ 472



Additional References

Canonical seesaw: [Minkowski '77] [Gell-Mann/Ramond/Slansky '79]
[Mohapatra/Senjanovic '80] [Yanagida '/9] [Schechter/Valle ’8OT

Low-scale seesaws: [Mohapatra '93] [Mohapatra/Valle '86]
Bernabeu/Santamaria/Vidal/Mendez/Valle '86]
Gavela/Hambye/Hernandez/Hernandez '09] [Branco/Grimus/Lavoura '89]
(Malinsky/Romao/Lavoura '89]

Leptogenesis: [Fukugita/Yanagida '86]

Flavoured leptogenesis: [Endoh et. al. ‘03] [Pilaftsis/Underwood ‘O5] [Abada et.

al. ‘06] [Nir et. al. ‘06]
Resonant Leptogenesis: [Liu/Segre ‘93, Pilaftsis ‘97, Pilaftsis/Underwood '04;'05]

Leptogenesis via neutrino oscillations: [Akhmedov/Rubakov/Smirnov '98,
Asaka/Shaposhnikov 'O5]
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