#### HNLs at ATLAS, a 2024 Summary LHCP 2024

#### Gareth Bird On behalf of the ATLAS collaboration

Cavendish Laboratory University Of Cambridge

June 2024







#### Intro





- I'm Gareth
- Today, I'm going to:
  - Give a one-slide summary of our HNL models
  - Give the context of previous HNL searches at ATLAS
  - Present the TeV scale HNL t-channel searches in more detail <sup>1 2</sup>

<sup>&</sup>lt;sup>1</sup>ATLAS Collaboration. "Search for Majorana neutrinos in same-sign WW scattering events from pp collisions at  $\sqrt{s} = 13$  TeV". In: Eur. Phys. J. C 83 (2023), p. 824. DOI: 10.1140/epic/s10052-023-11915-y. arXiv: 2305.14931 [hep-ex]

<sup>&</sup>lt;sup>2</sup>ATLAS Collaboration. Search for heavy Majorana neutrinos in  $e^{\pm}e^{\pm}$  and  $e^{\pm}\mu^{\pm}$  final states via WW scattering in pp collisions at  $\sqrt{s} = 13$  TeV with the ATLAS detector. 2024. arXiv: 2403.15016 [hep-ex]

## **Targeted Models**



#### **Standard Model of Elementary Particles**

#### • Standard $\nu MSM$ except for

- 2QDH: 2 Quasi-Dirac HNLs. The model can cause LNV suppression and give extended phenomenology.
- Weinberg operator, higher order term with wilson coefficent and effective mass related to that probed at 0νββ experiments.

$$\mathcal{L}_{5, \text{ Weinberg}} = \sum_{\ell, \ell'}^{e, \mu, \tau} rac{C_{5}^{\xi \ell'}}{\Lambda} \left[ \Phi \cdot ar{L}_{\ell}^{c} 
ight] \left[ L_{\ell'} \cdot \Phi 
ight]$$
 (1)

$$m_{\ell\ell'} = C_5^{\ell\ell'} v^2 / \Lambda \tag{2}$$

3

$$\nu_{L,\ell} = \sum_{\text{mass},i} U_{i,\ell} \nu_i + \sum_{\text{mass},j} V_{\ell,j} N_j$$
(3)

<sup>&</sup>lt;sup>3</sup>Wikimedia Commons. File:Standard Model of Elementary Particles.svg — Wikimedia Commons, the free media repository. [Online; accessed 9-September-2020]. 2020. URL:

https://commons.wikimedia.org/w/index.php?title=File:Standard\_Model\_of\_Elementary\_Particles.svg&oldid=430960007

#### Previous ATLAS searches - Prompt



<sup>4</sup>CMS Collaboration. Search for heavy neutral leptons in final states with electrons, muons, and hadronically decaying tau leptons in proton-proton collisions at  $\sqrt{s} = 13$  TeV. Tech. rep. Submitted to the Journal of High Energy Physics. All figures and tables can be found at http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-22-011 (CMS Public Pages). Geneva: CERN, 2024. arXiv: 2403.00100. URL: https://cds.cern.ch/record/2890510

 $^{5}$ ATLAS Collaboration. "Search for heavy neutral leptons in decays of W bosons produced in 13 TeV pp collisions using prompt and displaced signatures with the ATLAS detector". In: JHEP 10 (2019), p. 265. DOI: 10.1007/JHEP10(2019)265. arXiv: 1905.09787 [hep-ex]

## Previous ATLAS searches - Displaced



- Full run 2
- Displaced lepton pair in the tracker+ prompt triggered-on lepton
- Lifetime  $\sim$ mm exclusion
- 2QDH re-interpretation alongside simple scenario



 $<sup>^{6}</sup>$ ATLAS Collaboration. "Search for Heavy Neutral Leptons in Decays of W Bosons Using a Dilepton Displaced Vertex in  $\sqrt{s} = 13$  TeV pp Collisions with the ATLAS Detector". In: Phys. Rev. Lett. 131 (2023), p. 061803. DOI: 10.1103/PhysRevLett.131.061803. arXiv: 2204.11988 [hep-ex]

# WW scattering Topology



Targeting  $\ell\ell' \in (ee, \mu e, \mu \mu)$  channels with combinations (Recent!<sup>7</sup>)

- Lepton Flavour Violation
- Excess of high  $p_{\rm T}$  leptons (for HNLs)
- Back-to-back jets: colour connectedness (high- $m_{jj}$  and rapidity separation)

Complimentary to neutrinoless double beta decay searches, can probe states not kinematically accessible ( $e\mu$  and  $\mu\mu$ ).

<sup>&</sup>lt;sup>7</sup>ATLAS Collaboration. Search for heavy Majorana neutrinos in  $e^{\pm}e^{\pm}$  and  $e^{\pm}\mu^{\pm}$  final states via WW scattering in pp collisions at  $\sqrt{s} = 13$  TeV with the ATLAS detector. 2024. arXiv: 2403.15016 [hep-ex]

#### What this could look like





180 200 p\_{+}^{\mu\_2}[GeV]

## Backgrounds: Prompt



| Sample       |                                  | Origin                                            |  |
|--------------|----------------------------------|---------------------------------------------------|--|
| Same Sign WW |                                  | Similar signature, but with outgoing neutrinos    |  |
|              | WZ scattering                    | Co-incidental lost lepton gives similar signature |  |
|              | $t\overline{t} + EWK$ , Triboson | Sub-leading prompt contribution                   |  |



EWK production dominates as it also creates back-to-back jets



One lepton lost in reconstruction

# Backgrounds: Non-Prompt

Using the power of a pre-existing analysis targeting same-sign WW, two styles of background are poorly modelled in Monte Carlo.

Non prompt Leptons: Mostly B decays

- Non-prompt object rejection power comes from tracking/isolation, keep set that fails some of these cuts (ID vs Anti-ID leptons)
- Calculate  $p_{\rm T}$ ,  $\eta$  dependant transfer factors using a di-jet enriched dataset  $e/\mu$ , prompt contaminations corrected for with Monte Carlo
- Apply transfer factors to regions adjacent to our SRs and CRs

'Charge-Flip' leptons: Mostly e brehms

- Design region with  $Z \rightarrow ee$  enrichment
- Derive a mis-ID probability
- Apply to a SR with opposite sign leptons

Also considered and determined to be negligible:

- Double-parton scattering
- Co-incidental W productions
- Charge flip  $\mu$

# **Region Designs**

Low background search with limited statistics.

Three channels with similar designs/strategies for combination purposes.

- Benefit from high energy leptons, easy-to-fire triggers on
- Design Signal Region cuts with low  $E_{\mathrm{T}}^{\mathrm{miss}}$  significance (S), low central activity and back-to-backness
- Invert the cuts to target prompt backgrounds for Control Regions

• Fit scale factors  $\mu_{\text{signal}}, \mu_{\text{WW}}, \mu_{\text{WZ}}$ 



## Control Regions WW



- Invert  $\mathcal{S}/\Delta\phi_{e\mu}$  requirement
- All these CRs have good purity and scale factors consistent with 1



## Control Regions WZ



#### • 'Invert' number of leptons (3)



# Signal Regions

UNIVERSITY OF CAMBRIDGE

- Unblinded: No new physics!
- Once you consider binning + competitive sensitivity, ultimately, a cut and count in final bin.
- Very statistically limited.



#### Signal Regions + Exclusions



 $m_{ee} > 24(24) \text{ GeV}$   $m_{e\mu} > 13(15) \text{ GeV}$   $m_{\mu\mu} > 16.7(13.1) \text{ GeV}$ Effective Weinberg majornana mass Limits: Expected (observed) 95% confidence

June 2024

## Combinations

- Combination is reasonably intuitive, float correlated signal strengths and combine nuisance parameters between channels (almost entirely negligible)
- Normalisations for each prompt background are floated separately for each channel (not the same phase space)







## The broader LHC picture





ALSO: First TeV scale  $e - \mu$  mixing

 $\mu\mu$ 

#### Conclusions



- HNLs are a historically powerful tool for explaining neutrino masses and cosmological phenomena
- We can use ATLAS to search for VBS-style excesses in the TeV regime with this framework
- ATLAS has created competitive limits of minimal and extended HNL models between  $m_N\sim 10-10^4~{\rm GeV}$  alongside new Weinberg limits on  $C_5^{\mu e}/\Lambda$  and  $C_5^{\mu \mu}/\Lambda$



# Part I Back-up

#### The broader picture



<sup>8</sup>Enrique Fernández-Martínez et al. "Effective portals to heavy neutral leptons". In: *Journal of High Energy Physics* 2023.9 (Sept. 2023). ISSN: Gareth Bird HNLs at ATLAS June 2024

## Precise Region Defintions

| Channel | Variable               | SR         | $W^{\pm}W^{\pm}$ CR | WZ CR     |
|---------|------------------------|------------|---------------------|-----------|
| ee/eµ   | $N_{\ell}$             | =2         |                     | =3        |
|         | $ \Delta y_{jj} $      |            | > 2                 |           |
|         | $m_{jj}$               | > 500 GeV  |                     |           |
|         | $m_{\ell\ell\ell}$     | -          | -                   | > 106 GeV |
| ee      | $ m_{\ell\ell} - m_Z $ | > 15 GeV - |                     |           |
|         | $ \eta_{\ell} $        |            |                     |           |
|         | $m_{\ell\ell}$         | > 20 GeV   |                     |           |
|         | $p_{T}^{\ell_{1}}$     | -          | < 250               | -         |
|         | $p_{\mathrm{T}}^{j_1}$ | > 30 GeV   | > 45 GeV            | > 30 GeV  |
|         | $p_{T}^{j_{2}}$        | > 25 GeV   | > 30 GeV            | > 25 GeV  |
|         | Š                      | < 4.5      | > 4.5               | -         |
| еµ      | $p_{\mathrm{T}}^{j_1}$ | > 30 GeV   | > 45 GeV            | > 45 GeV  |
|         | $p_{\mathrm{T}}^{j_2}$ | > 25 GeV   | > 30 GeV            | > 30 GeV  |
|         | $ \Delta \phi_{e\mu} $ | > 2.0      | < 2.0               | -         |

| Observable               | SR               | ssWW-CR        | WZ-CR               |  |  |
|--------------------------|------------------|----------------|---------------------|--|--|
| Same-sign muons          |                  |                |                     |  |  |
| Number of b-jets         | = 0              |                |                     |  |  |
| $m_{jj}$                 | > 300 GeV<br>> 4 |                |                     |  |  |
| $ \Delta y_{jj} $        |                  |                |                     |  |  |
| Third lepton (OS)        | = 0 (baseline)   | = 0 (baseline) | = 1 (signal $\mu$ ) |  |  |
| $E_{T}^{miss}$ signif. S | < 4.5            | > 5.8          | < 4.5               |  |  |
| mere                     | _                | _              | > 100 GeV           |  |  |
| $p_{\rm T}^{\mu_2}$      | -                | < 120 GeV      | —                   |  |  |

 $\mu\mu$ 

 $ee/\mu e$