

Energy-Energy Correlators in pp and AA

Simon Rothman (MIT) for the CMS Collaboration ALICE Collaboration STAR Collaboration

1417

A thought experiment

 $\mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g^a_{\mu} \partial_{\nu} g^a_{\mu} - g_s f^{abc} \partial_{\mu} g^a_{\nu} g^b_{\mu} g^c_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \partial_{\nu} W^+_{\mu} \partial_{\nu} W^-_{\mu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \partial_{\nu} W^+_{\mu} \partial_{\nu} W^-_{\mu} - \frac{1}{4} g^2_s f^{abc} f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \partial_{\nu} W^+_{\mu} \partial_{\nu} W^-_{\mu} - \frac{1}{4} g^2_s f^{abc} f^{abc} f^{abc} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \partial_{\nu} W^+_{\mu} \partial_{\nu} W^-_{\mu} - \frac{1}{4} g^2_s f^{abc} f^{abc} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \partial_{\nu} W^+_{\mu} \partial_{\nu} W^-_{\mu} - \frac{1}{4} g^2_s f^{abc} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} g^d_{\mu} g^e_{\nu} g^d_{\mu} g^e_{\nu} g^d_{\mu} g^e_{\nu} g^d_{\mu} g^e_{\nu} g^e_{\nu} g^d_{\mu} g^e_{\nu} g^e_{\nu} g^d_{\mu} g^e_{\nu} g$ $M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2r^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - igc_{w}(\partial_{\nu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - W_{\mu}^{-}))$ $W^+_{\nu}W^-_{\mu}) - Z^0_{\nu}(W^+_{\mu}\partial_{\nu}W^-_{\mu} - W^-_{\mu}\partial_{\nu}W^+_{\mu}) + Z^0_{\mu}(W^+_{\nu}\partial_{\nu}W^-_{\mu} - W^-_{\nu}\partial_{\nu}W^+_{\mu})) - U^0_{\nu}(W^+_{\mu}\partial_{\nu}W^-_{\mu}) + Z^0_{\mu}(W^+_{\mu}\partial_{\nu}W^-_{\mu}) + Z^0_{\mu}(W^+_{\mu}\partial_{\mu}W^-_{\mu}) + Z^0_{\mu}(W^+_{\mu}\partial_{\mu}W^-_{\mu})$ $igs_{w}(\partial_{\nu}A_{\mu}^{-}(W_{\mu}^{+}W_{\nu}^{-}-W_{\nu}^{+}W_{\mu}^{-})-A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+})+A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-}-W_{\mu}^{-})$ $W_{\nu}^{-}\partial_{\nu}W_{\nu}^{+})) - \frac{1}{2}g^{2}W_{\nu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\nu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} + g^{2}c_{\nu}^{2}(Z_{\nu}^{0}W_{\nu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - G_{\nu}^{0}))$ $Z_{\mu}^{0}Z_{\mu}^{0}W_{\mu}^{+}W_{\mu}^{-}) + g^{2}s_{\nu}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\mu}^{-} - A_{\mu}A_{\mu}W_{\mu}^{+}W_{\mu}^{-}) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-} - A_{\mu}A_{\mu}W_{\mu}^{+}W_{\mu}^{-}) + g^{2}s_{w}c_{\mu}(A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-} - A_{\mu}A_{\mu}W_{\mu}^{-})) + g^{2}s_{w}c_{\mu}(A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-} - A_{\mu}A_{\mu}W_{\mu}^{-})) + g^{2}s_{w}c_{\mu}(A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-} - A_{\mu}A_{\mu}W_{\mu}^{-})) + g^{2}s_{w}c_{\mu}(A_{\mu}Z_{\mu}^{0}(W_{\mu}^{-})) + g^{2}s_{w}c_{\mu}(A_{\mu}Z_{\mu}^{-})) + g^{2}s_{w}c_{\mu}(A_{\mu}Z_{\mu}^{-})) + g^{2}s_{w}c_{\mu}(A_{\mu}Z_{\mu}^{-})) + g^{2}s_{w}c_{\mu}(A_{\mu}Z_{\mu}^{-}) + g^{2}s_{w}c_{\mu}(A_{\mu}Z_{\mu}^{-})) + g^$ $W_{\nu}^{+}W_{\nu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - 2M^{2}\alpha_{h}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac$ $\beta_h \left(\frac{2M^2}{\sigma^2} + \frac{2M}{\sigma} H + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) \right) + \frac{2M^4}{\sigma^2} \alpha_h - \frac{2M^4}{\sigma^2} + \frac{2M^4}{\sigma^2} +$ $g \alpha_h M (H^3 + H \phi^0 \phi^0 + 2 H \phi^+ \phi^-) \frac{1}{5}g^2\alpha_h\left(H^4+(\phi^0)^4+4(\phi^+\phi^-)^2+4(\phi^0)^2\phi^+\phi^-+4H^2\phi^+\phi^-+2(\phi^0)^2H^2\right)$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{r^2}Z^0_{\mu}Z^0_{\mu}H \frac{1}{2}ig\left(W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{0})-W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})\right)+$ $\frac{1}{2}g\left(W^+_{\mu}(H\partial_{\mu}\phi^- - \phi^-\partial_{\mu}H) + W^-_{\mu}(H\partial_{\mu}\phi^+ - \phi^+\partial_{\mu}H)\right) + \frac{1}{2}g\frac{1}{c_{\mu}}(Z^0_{\mu}(H\partial_{\mu}\phi^0 - \phi^0\partial_{\mu}H) +$ $M\left(\frac{1}{a}Z_{\mu}^{0}\partial_{\mu}\phi^{0}+W_{\mu}^{+}\partial_{\mu}\phi^{-}+W_{\mu}^{-}\partial_{\mu}\phi^{+}\right)-ig\frac{s_{w}^{2}}{a}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}$ $W_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!}}^-\phi^+) - ig rac{1-2c_w^2}{2c_-} Z_{_{\!\!\!\!\!\!\!\!\!}}^0(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) + igs_w A_\mu(\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) \frac{1}{4}g^2W^+_{\mu}W^-_{\mu}\left(H^2 + (\phi^0)^2 + 2\phi^+\phi^-\right) - \frac{1}{8}g^2\frac{1}{c^2}Z^0_{\mu}Z^0_{\mu}\left(H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2\phi^+\phi^-\right) - \frac{1}{8}g^2\frac{1}{c^2}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}\left(H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2\phi^+\phi^-\right) - \frac{1}{8}g^2\frac{1}{c^2}Z^0_{\mu}Z^0_$ $\frac{1}{2}g^2\frac{s_w^2}{c}Z_{\mu}^0\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) - \frac{1}{2}ig^2\frac{s_w^2}{c}Z_{\mu}^0H(W_{\mu}^+\phi^--W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^+\phi^- + W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^+\phi^- + W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^-\phi^- + W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{$ $W_{u}^{-}\phi^{+}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{u}^{+}\phi^{-}-W_{u}^{-}\phi^{+}) - q^{2}\frac{s_{w}}{s_{w}}(2c_{w}^{2}-1)Z_{u}^{0}A_{u}\phi^{+}\phi^{-}$ $g^2 s_w^2 A_\mu A_\mu \phi^+ \phi^- + \frac{1}{2} i g_s \lambda_{ij}^a (\bar{q}_i^\sigma \gamma^\mu q_j^\sigma) g_\mu^a - \bar{e}^\lambda (\gamma \partial + m_k^\lambda) e^{\lambda} - \bar{\nu}^\lambda (\gamma \partial + m_u^\lambda) \nu^\lambda - \bar{u}_s^\lambda (\gamma \partial + m_u^\lambda)$ $m_{\eta}^{\lambda}u_{i}^{\lambda} - \bar{d}_{i}^{\lambda}(\gamma\partial + m_{d}^{\lambda})d_{i}^{\lambda} + igs_{w}A_{\mu}\left(-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_{i}^{\lambda}\gamma^{\mu}u_{i}^{\lambda}) - \frac{1}{3}(\bar{d}_{i}^{\lambda}\gamma^{\mu}d_{i}^{\lambda})\right) +$ $\frac{ig}{4c}Z^{0}_{\mu}\{(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s^{2}_{w}-1-\gamma^{5})e^{\lambda})+(\bar{d}^{\lambda}_{i}\gamma^{\mu}(\frac{4}{3}s^{2}_{w}-1-\gamma^{5})d^{\lambda}_{i})+$ $(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}+\gamma^{5})u_{j}^{\lambda})\}+\frac{ig}{2\sqrt{2}}W_{\mu}^{+}\left((\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})U^{lep}{}_{\lambda\kappa}e^{\kappa})+(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})\right)+$ $\frac{ig}{2\sqrt{2}}W_{\mu}^{-}\left((\bar{e}^{\kappa}U^{lep}_{\kappa\lambda}^{\dagger}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{d}_{j}^{\kappa}C_{\kappa\lambda}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})\right)+$ $\frac{ig}{2M_{\star}/2}\phi^{+}\left(-m_{e}^{\kappa}(\bar{\nu}^{\lambda}U^{lep}_{\lambda\kappa}(1-\gamma^{5})e^{\kappa})+m_{\nu}^{\lambda}(\bar{\nu}^{\lambda}U^{lep}_{\lambda\kappa}(1+\gamma^{5})e^{\kappa})+\right.$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{e}^{\lambda}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1+\gamma^{5})\nu^{\kappa})-m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1-\gamma^{5})\nu^{\kappa}\right)-\frac{g}{2}\frac{m_{\nu}^{\lambda}}{M}H(\bar{\nu}^{\lambda}\nu^{\lambda}) \frac{g}{2}\frac{m_{e}^{\lambda}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{ig}{2}\frac{m_{\nu}^{\lambda}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{5}\nu^{\lambda}) - \frac{ig}{2}\frac{m_{e}^{\lambda}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}M_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa} - \frac{1}{4}\bar{\nu}_{\lambda}M_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa} - \frac{1}{4}\bar{\nu}_{\lambda}M_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa} - \frac{1}{4}\bar{\nu}_{\lambda}M_{\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa} - \frac{1}{4}\bar{\nu}_{\lambda}M_{\kappa}^{$ $\frac{1}{4}\overline{\hat{\nu}_{\lambda}}\frac{M_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa}}{m_{\lambda\kappa}^{R}} + \frac{ig}{2M_{\lambda}/2}\phi^{+}\left(-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}) + \right)$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa})-m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa}\right)-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda}) \frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda}) + \frac{ig}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{u}_{j}^{\lambda}\gamma^{5}u_{j}^{\lambda}) - \frac{ig}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g_{\mu}^{c} +$ $\bar{X}^+ (\partial^2 - M^2) X^+ + \bar{X}^- (\partial^2 - M^2) X^- + \bar{X}^0 (\partial^2 - \frac{M^2}{c^2}) X^0 + \bar{Y} \partial^2 Y + igc_w W^+_u (\partial_\mu \bar{X}^0 X^- - M^2) X^0 + \bar{Y} \partial^2 Y + igc_w W^+_u (\partial_\mu \bar{X}^0 X^- - M^2) X^0 + \bar{Y} \partial^2 Y + igc_w W^+_u (\partial_\mu \bar{X}^0 X^- - M^2) X^0 + \bar{Y} \partial^2 Y + igc_w W^+_u (\partial_\mu \bar{X}^0 X^- - M^2) X^0 + \bar{Y} \partial^2 Y + igc_w W^+_u (\partial_\mu \bar{X}^0 X^- - M^2) X^0 + \bar{Y} \partial^2 Y + igc_w W^+_u (\partial_\mu \bar{X}^0 X^- - M^2) X^0 + \bar{Y} \partial^2 Y + igc_w W^+_u (\partial_\mu \bar{X}^0 X^- - M^2) X^0 + \bar{Y} \partial^2 Y + igc_w W^+_u (\partial_\mu \bar{X}^0 X^- - M^2) X^0 + \bar{Y} \partial^2 Y + igc_w W^+_u (\partial_\mu \bar{X}^0 X^- - M^2) X^0 + \bar{Y} \partial^2 Y + igc_w W^+_u (\partial_\mu \bar{X}^0 X^- - M^2) X^0 + \bar{Y} \partial^2 Y + igc_w W^+_u (\partial_\mu \bar{X}^0 X^- - M^2) X^0 + \bar{Y} \partial^2 Y + igc_w W^+_u (\partial_\mu \bar{X}^0 X^- - M^2) X^0 + \bar{Y} \partial^2 Y + igc_w W^+_u (\partial_\mu \bar{X}^0 X^- - M^2) X^0 + \bar{Y} \partial^2 Y + igc_w W^+_u (\partial_\mu \bar{X}^0 X^- - M^2) X^0 + \bar{Y} \partial^2 Y + igc_w W^+_u (\partial_\mu \bar{X}^0 X^- - M^2) X^0 + \bar{Y} \partial^2 Y + igc_w W^+_u (\partial_\mu \bar{X}^0 X^- - M^2) X^0 + \bar{Y} \partial^2 Y + igc_w W^+_u (\partial_\mu \bar{X}^0 X^- - M^2) X^0 + igc_w W^-_u (\partial_\mu \bar$ $\partial_{\mu}\bar{X}^{+}X^{0})+igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}-\partial_{\mu}\bar{X}^{+}\bar{Y})+igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} \partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} \partial_{\mu} \bar{X}^{-} X^{-}) + igs_{w} A_{\mu} (\partial_{\mu} \bar{X}^{+} X^{+} \partial_{\mu}\bar{X}^{-}X^{-}) - rac{1}{2}gM\left(\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + rac{1}{c^{2}_{c}}\bar{X}^{0}X^{0}H\right) + rac{1-2c^{2}_{w}}{2c_{w}}igM\left(\bar{X}^{+}X^{0}\phi^{+} - \bar{X}^{-}X^{0}\phi^{-}\right) + igM\left(\bar{X}^{+}X^{0}\phi^{+} - \bar{X}^{0}\phi^{-}\right) + igM\left(\bar{X}^{+}X^{0}\phi^{+} - \bar{X}^{0}\phi^{+}\right) + igM\left(\bar{X}^{0}\phi^{+} - \bar{X}^{0$ $\frac{1}{2\sigma} igM(\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}) + igMs_{w}(\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}) +$ $\frac{1}{2}igM\left(\bar{X}^{+}X^{+}\phi^{0}-\bar{X}^{-}X^{-}\phi^{0}\right)$.

14117

A thought experiment

A thought experiment

A thought experiment

Electric Force

250

A thought experiment

What experiment can we do that will **directly** reveal features of QCD??

- 1. What are energy-energy correlators, and why are they so important?
- 2. Technical challenges (unfolding, statistical relationships, ...)
- 3. Existing measurements
- 4. Future directions

- 1. What are energy-energy correlators, and why are they so important?
- 2. Technical challenges (unfolding, statistical relationships, ...)
- 3. Existing measurements
- 4. Future directions

QCD experiment according to a CFT theorist

• Fundamental object of field theory is energy flow operator

$$\mathcal{E}(\vec{n}) = \lim_{r \to \infty} r^2 \int_0^\infty dt n^i T_{0i}(t, r\vec{n})$$

- Flow of energy through idealized calorimeter cell located at infinity
- From QFT perspective, jet substructure is the study of correlation functions of energy flow operators

Energy-energy correlators

• Traditional observables are based on infinite sum of correlators

- Root of technical issues with perturbative calculations
- Implies need for infinite moments of nonperturbative track etc functions
- Instead, we can just measure the straightforward theoretical objects:

 $\langle \Psi | \mathcal{E}(\hat{n}_1) \cdots \mathcal{E}(\hat{n}_k) | \Psi \rangle$

- These are the energy energy correlators
- Advantages:
 - Clean theoretical structure allows perturbative calculations to high order
 - Need only first few integer moments of relevant nonperturbative functions
 - Allows direct view of underlying QCD structure and dynamics
 - Rapidly emerging excitement and expertise growing in theory community

14117

Measuring energy-energy correlators

- N-point correlation function measured as energy-weighted N-way correlation between configurations of particles
- Each jet contributes a distribution in configuration space
 - Configuration space can be projected onto longest axis for single scaling variable
- Ex: 2-point correlator depends only on angular separation between pair

Understanding energy-energy correlators

x_L ~ splitting p_T ~ 1/t_{formation}

- 1. What are energy-energy correlators, and why are they so important?
- 2. Technical challenges (unfolding, statistical relationships, ...)
- 3. Existing measurements
- 4. Future directions

Statistical correlations

Every bin of every observable is statistically related to every other bin of every other observable

Unfolding complications

- Each jet contributes distribution, rather than single number
 - Not sufficient to simply match jets from particle to detector level
 - Must account for reconstruction of individual final-state particles
- Most complicated for neutrals, where particle-level to detector-level mapping can be many-to-many

- 1. What are energy-energy correlators, and why are they so important?
- 2. Technical challenges (unfolding, statistical relationships, ...)
- 3. Existing measurements
- 4. Future directions

Overview of current measurements

The second-order correlator has been measured at three different scales:

Experiment	Collision energy	Jet p_T range	Track only?	Citation
STAR	200 GeV	15 - 50 GeV	Yes	arXiv:2309.05761
ALICE	5.02 TeV	20 - 80 GeV	Yes	https://alice-figure.web.cern.ch/node/ 26341
CMS	13 TeV	97 - 1784 GeV	No	<u>CMS-SMP-22-015</u>

In addition, the CMS measurement also includes the third order correlator and its ratio to the second-order correlator, allowing extraction of the strong coupling

$$\frac{d\Sigma}{d(\Delta R)} = \sum_{ijk} \frac{p_T^i p_T^j p_T^k}{(p_T^{jet})^3} \delta\left(\max[\Delta R_{ij}, \Delta R_{ik}, \Delta R_{jk}] - \Delta R\right)$$

- Unfolding is performed in jet p_{T} , but not in R_{I}
- Same free hadron, transition, and free parton regimes as expected
- Measurement agrees beautifully with QCD calculations in perturbative regime

CMS

Same free hadron and free parton regimes

- Fully-unfolded in jet p_T and ΔR
- Agreement with Pythia8 predictions remarkably good
- Herwig7 agreement much worse (angular ordering)

Strong coupling from EECs

- Take ratio to cancel systematics
- Slope in perturbative region linear function of alpha_s
- Comparison with calculations at NLO + NNLL_{approx} + NP allows extraction of alpha_s
- Most precise extraction of α_s from jet substructure to date

Result: $\alpha_s = 0.1229^{+0.0014(stat.)+0.0030(theo.)+0.0023(exp.)}_{-0.0012(stat.)-0.0033(theo.)-0.0036(exp.)}$

- 1. What are energy-energy correlators, and why are they so important?
- 2. Technical challenges (unfolding, statistical relationships, ...)
- 3. Existing measurements
- 4. Future directions

But what about "and AA"?

• pp measurements are just the first step!

- Will be sensitive to:
 - Jet wake (<u>PRL 132 (2024) 01190</u>)
 - Color coherence (<u>PRL 130 (2023) 262301</u>, <u>JHEP 09 (2023) 088</u>)
 - Modification of jet shapes due to medium interactions (<u>arXiv:2308.01294</u>)

The challenges in HI

- Lots of additional complications in HI collisions:
 - Jet quenching can lead to weird biases in jets from dijet triggers
 - Huge additional background from underlying event
- Need to estimate and subtract these backgrounds, and handle them appropriately in the unfolding

Other exciting possibilities

- Heavy flavor jets expose mass effects
 - Requires understanding and unfolding of b-jet tagging and influence on the EEC distributions
 - Directly sensitive to dead cone effect (<u>arXiv:2307.15110</u>)
 - Could be most interesting in HI collisions

Other exciting possibilities

- Heavy flavor jets expose mass effects
 - Requires understanding and unfolding of b-jet tagging and influence on the EEC distributions
 - Directly sensitive to dead cone effect (<u>arXiv:2307.15110</u>)
 - Could be most interesting in HI collisions
- **Higher-order correlators** probe higher-order QCD dynamics
 - Can be resolved in the larger configuration space to see shape-dependencies
 - Sensitive to non-gausianities (<u>arXiv:2205.02857</u>),
 interference effects from gluon spin (<u>arXiv:2011.02492</u>)

CMS Open Data, $R_L \in (0.3,\,0.4)$

Other exciting possibilities

- Heavy flavor jets expose mass effects
 - Requires understanding and unfolding of b-jet tagging and influence on the EEC distributions
 - Directly sensitive to dead cone effect (arXiv:2307.15110)
 - Could be most interesting in HI collisions
- **Higher-order correlators** probe higher-order QCD dynamics
 - Can be resolved in the larger configuration space to see shape-dependencies
 - Sensitive to non-gausianities (<u>arXiv:2205.02857</u>), interference effects from gluon spin (<u>arXiv:2011.02492</u>)
- Measurements with EM initial states probe much cleaner environment
 - Can have little-to-no background from UE, PU
 - Allows access to back-to-back limit, event topology analysis
 - Can be seen in e.g. UPC collisions at LHC, e+e- collisions at ALEPH (see their poster)

Conclusions

- Energy-energy correlators are a powerful tools for high-precision experimental QCD with strong theoretical interpretability
- Multiple HEP collaborations (STAR, ALICE, CMS) have undertaking measurements of these observables in pp collisions, which are already sensitive to important features of QCD
- Lots of exciting possibilities on the horizon
 - HI collisions
 - Heavy flavor jets
 - Shape dependencies in higher-order correlators
 - Collisions with EM initial states

Backup

More details about the STAR measurement

Measurement is unfolded in jet pT

Systematics include

- Tracking efficiency
- Detector simulation parameters
- Energy corrections
- Maximum difference between matching jets at truth-level and detector-level thanks to unmodeled effects in R_L, particle energies

More details about ALICE measurement

More details about CMS measurement (1)

Systematics include

- Theoretical uncertainties (factorization scale, PS, UE scales, PDFS, ...)
- Experimental uncertainties (particle energy scales, tracking efficiency, ...)
- Modeling uncertainty in construction of response matrix

Dominant uncertainty is from pythia vs herwig modeling in construction of response matrix

More details about CMS measurement (2)

Handling UE backgrounds in HI events

- Use reflected eta cone to characterize UE
- Two kinds of background

Background can be handled by appropriate thresholds in jet $\ensuremath{p_{\text{T}}}$

For more details, see <u>Jussi Viinikainen's talk</u> at the Winter Workshop on Nuclear Dynamics 2024

Higher-order correlators

- Higher-order correlators probe higher-order QCD dynamics
 - \circ $\,$ $\,$ They can be resolved in configuration space to see shape-dependence in QCD $\,$
- Sensitive to:
 - non-gaussianities (arXiv:2205.02857)
 - Interference effects from gluon spin (<u>arXiv:2011.02492</u>)
 ...
- Higher-dimensional objects pose additional challenges in unfolding, this is in progress
 - Need to carefully handle detector effects for all particles in configuration, and propagate to EEC
 - Many more bins -> additional technical challenges

CMS Open Data, $R_L \in (0.3, 0.4)$

Mass effects

- Energy-energy correlators are sensitive to mass effects in heavy jets
- Should directly show dead cone effect
- Mass effects in HI collisions will be particularly interesting, as medium effects
 will partially fill the dead cone
 Two-Point Correlator

1417

Other initial states

- Addition of new triggers for ultra-peripheral PbPb collisions in CMS Run 3 allow running the CMS experiment as a photon-photon collider
- This data could have three major benefits:
 - Little to no background from UE and PU
 - Enhancement in heavy flavor
 - Access to the back-to-back limit, event topology analysis
- Similar benefits can also be seen in an analysis in e⁺e⁻ data

E+e- simulation

