Medium response to jet propagation in the QGP

LHCP2024: 12th Large Hadron Collider Physics Conference 3-7 June 2024 Northeastern Univ., Boston, USA

Yeonju Go

(Brookhaven National Laboratory)

On behalf of the ALICE, ATLAS, and CMS collaborations

Medium Response to Jet Propagation

- By energy and momentum conservation, lost jet energy goes into medium
- Typical form of medium response to jets enhancement in the jet direction depletion in the opposite direction

Medium Response to Jet Propagation

- By energy and momentum conservation, lost jet energy goes into medium
- Typical form of medium response to jets enhancement in the jet direction depletion in the opposite direction

G.-Y. Qin et al, PRL 103, 152303 (2009)

Why is medium response important to understand?

- Medium response changes the internal structure of jets e.g. jet shape, fragmentation function Essential to describe the jet (sub)structure precisely
- Medium excitation is directly related to the QGP properties \rightarrow e.g. η/s , jet transport coefficient, jet thermalization dynamics

R. B. Neufeld, PRC 79 (2009) 054909

Radius-dependent Jet RAA at high-pt

small R A large R

CMS JHEP 05 (2021) 284

0.2 1.5 B^HA^H

0.5

 $R_{AA}^R/R_{AA}^{R=0.2}$ В^В medium response? recovery of out-of-cone soft radiation? Iarger suppression at large angle?

At high jet p_T (400-500 GeV), relatively small R-dependence in data

The trend between prediction w/ and w/o medium response for different

models is the same; higher $R_{AA}^R / R_{AA}^{R=0.2}$ for models w/ medium response

Radius-dependent Jet RAA at low-pt

- Tension between ATLAS and ALICE, but there are differences
 - full jet vs. charged-particle jet
 - η range \rightarrow quark-jet fraction difference, p_T spectrum difference in pp

Hadron-triggered Jets: pr dependence

Low-p_T jet (10-20 GeV) enhancement \rightarrow significant difference between models w/ and w/o medium response

data described by models w/ medium response (Hybrid w/ wake, JEWEL w/ recoil)

Hadron-triggered Jets: pr dependence

Low-p_T jet (10-20 GeV) enhancement \rightarrow significant difference between models w/ and w/o medium response

data described by models w/ medium response (Hybrid w/ wake, JEWEL w/ recoil)

Z-triggered Hadrons: pr dependence

$$I_{AA} = \frac{Y_{Pb+Pb}^{hadron}/N_{Pb+Pb}^{Z}}{Y_{pp}^{hadron}/N_{pp}^{Z}}$$

Access to initial hard-scattering using electroweak bosons, e.g. Z

Jet Shape: Angular Distribution

- Jet shapes have been measured for leading jets of dijets for different x_i
- At large angle, enhancement of low p_T particles at larger angles

Jet Shape: Angular Distribution

Yeonju Go

Hadron-Jet Angular Correlation

Hadron-Jet Angular Correlation

Hadron-Jet Angular Correlation

Z-hadron Angular Correlation

Yeonju Go

Z-hadron Angular Correlation

Yeonju Go

 Modifications in jet direction are convoluted with *in-medium* parton shower modification and medium response

diffusion wake (depletion) present in the opposite jet direction

 Modifications in jet direction are convoluted with *in-medium* parton shower modification and medium response

diffusion wake (depletion) present in the opposite jet direction

No significant diffusion wake signal within the current sensitivity in data

- Data provides limits on double ratio amplitude ➡ 95% CL upper limit of 0.0095 does not rule out CoLBT prediction of 0.0018
 - Stat. uncert. dominates in probability distribution; more statistics would be valuable

. . .

bulk properties

Medium response is essential to precise jet measurements and allows direct access to QGP

- bulk properties
- LHC measurements on the medium response to jet propagation
 - \rightarrow Enhancement of low p_T particles at large angles w.r.t jet axis
 - Acoplanarity broadening
 - Hint of diffusion wake signal
 - \rightarrow Mild R-dependence of jet R_{AA} at high- p_T , tension between experiments at low- p_T

Medium response is essential to precise jet measurements and allows direct access to QGP

- bulk properties
- LHC measurements on the medium response to jet propagation
 - \rightarrow Enhancement of low p_T particles at large angles w.r.t jet axis
 - Acoplanarity broadening
 - Hint of diffusion wake signal
 - \rightarrow Mild R-dependence of jet R_{AA} at high- p_T , tension between experiments at low- p_T
- understanding the jet-QGP interaction mechanism

Medium response is essential to precise jet measurements and allows direct access to QGP

Precise experimental measurements with large statistics will help constraining models and

- bulk properties
- LHC measurements on the medium response to jet propagation
 - \rightarrow Enhancement of low p_T particles at large angles w.r.t jet axis
 - Acoplanarity broadening
 - Hint of diffusion wake signal
 - \rightarrow Mild R-dependence of jet R_{AA} at high- p_T , tension between experiments at low- p_T
- understanding the jet-QGP interaction mechanism

Medium response is essential to precise jet measurements and allows direct access to QGP

Thank you!

Precise experimental measurements with large statistics will help constraining models and

Ungroomed Charged Jet Mass

Yeonju Go

ALICE ALI-PREL-540565

• Ungroomed vs Groomed

Ungroomed jets; sensitive to medium response

 Hint of shift towards low mass in Pb-Pb compared to pp

Ungroomed Charged Jet Mass

Yeonju Go

ALICE ALI-PREL-540565

• Ungroomed vs Groomed

 Ungroomed jets; sensitive to medium response

- Hint of shift towards low mass in **Pb-Pb** compared to *pp*
- Data slightly favors Hybrid w/ wake than Hybrid w/o wake

