Probing Cold Nuclear Matter Effects with Heavy Flavor and Quarkonia in HI

On behalf of the LHC experiments at CERN for LHCP2024

Dr. Mindaugas Šarpis

Vilnius University / The University of Manchester

June 04, 2024

The University of Manchester

Vilnius University

Different Collision Configurations

Hard Probes

Probes with heavy quarks are produced in the hard processes happening in the initial stages of the collision.

- Quarkonia
- Open Heavy flavor

h

eeeeef

b

 \mathbf{J}/ψ

ī

h

С

n

 \square

Hard Probes

Probes with heavy quarks are produced in the hard processes happening in the initial stages of the collision.

- Quarkonia
 - \triangleright Used in R_{pA} measurements
 - Ground to excited state production ratios probe final state effects
- Open heavy flavor
 - ▷ Hierarchical energy loss in the medium
 - Carries large fraction of energy enabling precise study of hadron density and initial state effects in nucleus
 - > Good probe of hadronization mechanism
 - $\,\triangleright\,$ Great input to test QCD calculations

CNM Effects with Heavy Flavor and Quarkonia

In small / medium systems with high multiplicity collisions QGP-like effects are observed (without deconfinemet):

• Collectivity

(vs vacuum-like behavior)

(co-mover effect)

(nuclear environment)

- Quarkonia breakup
- Strangeness enhancement
- Modification of baryon / meson ratio (multiplicity dependence)

Open questions:

- How can these effects be explained?
- How universal hadronisation is?
- How do the observables change in transition from small to large and from low to high density QCD systems?

Coverage of Parameter Space

Modification of $\chi_{c1}(3872)$ and $\psi(2S)$ production in pPb

First measurement of the nuclear modification factor of an exotic multi-quark state.

- Good probe of co-mover and coalescence effects
- χ_{c1}(3872) production is expected to depend on the size of the system
- Tighly bound and molecular states have different predictions

(7) 25000 W 20000 LHCb $\oint pp \sqrt{s} = 8 \text{ TeV}, 2 \text{ fb}$ $\rightarrow J/\psi \pi^+\pi^-$ - Total fit -Background Candidates/ 12000 10000 3872) - $\psi(2S)$ $\chi_{-1}(3872)$ 5000 σ_{X₍₁(387)2} σ_{w(25)} Candidates/(4 MeV/c²) 450 10^{-} 400 350 200045 300 **L** DD250 R_{pPF} 200 150 $\oint p Pb \sqrt{s_{NN}} = 8.16 \text{ TeV}, 12.5 \text{ nb}^{-1}$ 100 50 (4 MeV/c²) andida Pbp $\sqrt{s_{\rm NN}} = 8.16 \text{ TeV}, 19.3 \text{ nb}^{-1}$ 3700 3800 3900 $M_{J/\psi \pi^+\pi^-}$ [MeV/c²]

LHCD

[arXiv:2402.14975]

Charm fragmentation fractions and $c\overline{c}$ cross sections in pPb

• The cross section is found to be consistent with a binary scaling of pQCD calculations from pp collisions

$$R_{\text{pPb}}(c\overline{c}) = 0.91 \pm 0.04 \text{ (stat.)} + 0.08 \text{ (syst.)} + 0.09 \text{ (syst.)} + 0.09 \text{ (syst.)} + 0.04 \text{ (extr.)} + 0.04 \text{ (extr.)} + 0.03 \text{ (extr.)} + 0.03 \text{ (lumi.)} + 0.0$$

Production cross section of prompt \equiv_{c}^{0} baryons in pPb

- pQCD models taking into account only CNM effects undersestimate the production cross section of prompt Ξ_c^+ baryons by an order of 40
- Model including quark coalescence brings the prediction closer to the data
- Measured *R_{pPb}* suggests a possible enhancement of Ξ⁰_c production via CNM effects

arXiv:2405.14538

Multiplicity dependence of $\sigma_{\psi(2S)}/\sigma_{J/\psi}$ pPb collisions

- New result from CMS
- Figures already available
- Full text available soon
- Different regions of rapidity are investigated
- A difference between promt and non-promt components is observed
- Suppression of the production ratio of $\psi(2S)/J/\psi$ visible in high multiplicity regions

CMS-PAS-HIN-24-001

Observation of double - J/ψ production in pPb collisions

- First observation of the concurrent production of two J/ψ mesons in protonnucleus collisions is presented
- After selection requirements 8.5 \pm 3.4 events are found for the J/ ψ J/ ψ + X final state
- The cross section is measured to be: $\sigma(pPb \rightarrow J/\psi J/\psi + X) =$ 22.0 $\pm 8.9 \text{ (stat)} \pm 1.5 \text{ (syst) nb}$

[CMS-PAS-HIN-23-013]

LHCb:

• Modification of $\chi_{c1}(3872)$ and $\psi(25)$ production in <i>p</i> Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV	arXiv:2402.14975
• Prompt and nonprompt $\psi(2S)$ production in pPb collisions at $\sqrt{s_{NN}}=$ 8.16 TeV	[arXiv:2401.11342]
• Strangeness enhancement with charm in high-mult. pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV	[arXiv:2311.08490]
• Fraction of χ_c decays in prompt $J\!/\psi$ production in pPb collisions at $\sqrt{s_{NN}}=$ 8.16 TeV	[arXiv:2311.01562]
• Prompt D^+ and D^+_s production in pPb collisions at $\sqrt{s_{NN}}=5.02$ TeV	[arXiv:2309.14206]
• Ξ_c^+ production in pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV	[arXiv:2305.06711]
• Charmonium production in pNe collisions at $\sqrt{s_{NN}} = 68.5 \text{ GeV}$	[arXiv:2211.11645]
• Open charm production and asymmetry in pNe collisions at $\sqrt{s_{NN}}=68.5~{ m GeV}$	[arXiv:2211.11633]
• Prompt D^0 nuclear modification factor in pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV	[arXiv:2205.03936]

[JHEP	04	(2024)	111]	[JHEP	(2023)	01562]
[JHEP	01	(2024)	070]	[PRL 131	(2023)	102301]
[EPJC	83	(2023)	541]	[PRL 132	(2024)	10232]
EPJC	83	(2023)	625]			

ALICE:

- Charm fragmentation fractions and $c\overline{c}$ cross sections in pPb collisions
- Production cross section of prompt Ξ_c^0 baryons in pPb collisions
- J/ψ production at midrapidity in pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV
- $\psi(2S)$ production vs. charged-particle multiplicity in pp and pPb collisions
- Measurements of the production of non-prompt charm hadron states in pPb CMS:
 - Multiplicity dependence of the ratio of $\psi(2S)/J/\psi$ pPb collisions
 - Observation of double J/ψ production in pPb collisions
 - B^+ differential cross section as a function of p_T and multiplicity in pPb
 - Multiplicity dependence of charm baryon and meson production in pPb

[arXiv:2405.14571] [arXiv:2405.14538] [arXiv:2211.14153] [arXiv:2204.10253] [study in progress]

[CMS-PAS-HIN-24-001] [CMS-PAS-HIN-23-013] [CMS-PAS-HIN-22-001] [CMS-PAS-HIN-21-016]

Summary

- Heavy flavor and quarkonia are excellent probes of the CNM
- Recent results from LHCb, ALICE and CMS show a wealth of information on the CNM effects
- The field is rapidly evolving with new results coming out regularly. It will only grow with more data in Run3 and detector upgrades
- The smooth transition in parameters between small and large systems means that a combined effort between the experts in HI, hadron spectroscopy and related fields will be required to better understand and explain the QCD processes related to hot and cold nuclear matter

BACKUP SLIDES

The LHCb Experiment

The LHCb Experiment

LHCb features relevant to HI physics and CNM studies:

- Excellent p_T resolution
- Excellent hadron, muon, electron and photon PID (with 3-5% mis-ID)
- Precise vertexing
- Excellent impact parameter resolution (15 + 29/ p_T [GeV]) μ m (UPC separation)

[JINST 3 (2008) S08005] [IJMPA 30 (2015) 07, 1530022]

LHCb as a Fixed Target Experiment

Helium identification and Observation of Hypertriton in LHCb

