Search for jet quenching in small systems

Filip Křížek

Nuclear Physics Institute Czech Academy of Sciences

Fundamental constituents of matter through frontier technologies

Quark-gluon plasma

Bernhard, J.E. arXiv:1804.06469

1

Bhalearo, arXiv:1407.1694

QGP in small collision systems?

CMS, JHEP 09 (2010) 091

- QGP-like signatures in high-multiplicity pp and p-A
- How do QGP signatures evolve when decreasing system size?
- Is there evidence for jet quenching in small collision systems?

Jet quenching

Interaction of partonic shower with QGP results in :

- Energy loss \Rightarrow suppression of yield of high- p_T jets and hadrons
- Jet substructure modification
- Medium induced acoplanarity

D. A. Appel, PRD 33, 717 (1986) & J.P. Blaizot et al., PRD 34, 2739 (1986)

P. Jacobs Jet substructure, Monday

Y. Go *Medium response to jet,* Monday

R. Ehlers Jet quenching, Thursday

Nuclear modification factor

$$R_{\rm pA}^{\rm min.bias} = \frac{1}{A} \cdot \frac{\mathrm{d}^2 \sigma_{\rm pA}^{h,j} / \mathrm{d} p_{\rm T} \mathrm{d} y}{\mathrm{d}^2 \sigma_{\rm pp}^{h,j} / \mathrm{d} p_{\rm T} \mathrm{d} y}$$

$$R_{\rm pA}^{\rm cent.} = \frac{1}{\langle T_{\rm pA} \rangle} \cdot \frac{(1/N_{\rm evt}) \cdot d^2 N_{\rm pA}^{h,j}/dp_{\rm T} dy}{d^2 \sigma_{\rm pp}^{h,j}/dp_{\rm T} dy}$$

- limited precision of $\langle T_{\rho A} \rangle$ for centrality biased events

- no correlation between hard and soft interactions

Nuclear modification factor is not defined for high-multiplicity pp collisions

Inclusive jets and b-jets in minimum bias p-Pb

- $R_{pPb} \sim 1 \Rightarrow$ no evidence for jet quenchig
- No sign of mass dependent effects

Q_{pPb} and R_{pPb} of jets vs event activity

ALICE, Eur. Phys. J C76 (2016) 271

- Event activity in ZNA from Pb spectators
- Model dependent (N_{coll}) based on signal from VOA in Pb-going direction

$$\langle N_{\text{coll}}^{\text{Pb-side}} \rangle_c = \langle N_{\text{coll}} \rangle_{\text{MB}} \cdot \frac{\langle S \rangle_c}{\langle S \rangle_{\text{MB}}}$$

• $Q_{\text{pPb}} \sim 1 \Rightarrow$ no evidence for jet quenching F. Krizek, LHCP 2024

Q_{pPb} and R_{pPb} of jets vs event activity

- Event activity in ZNA from Pb spectators
- Model dependent (N_{coll}) based on signal from VOA in Pb-going direction

$$\left\langle N_{\text{coll}}^{\text{Pb-side}} \right\rangle_{c} = \left\langle N_{\text{coll}} \right\rangle_{\text{MB}} \cdot \frac{\left\langle S \right\rangle_{c}}{\left\langle S \right\rangle_{\text{MB}}}$$

• $Q_{\text{pPb}} \sim 1 \Rightarrow$ no evidence for jet quenching F. Krizek, LHCP 2024

- Minimum bias events: $R_{pPb} \sim 1$ for all y^* ranges
- Events with activity bias: R_{pPb} depends on jet y^*

Centrality dependence of the dijet yield in p-Pb

ATLAS, Phys. Rev. Lett. 132 (2024) 102301

p+Pb collision

FCal in Pb going direction -4.9 < η < -3.2 Use dijets to constrain parton kinematics & measure event activity in FCal How is R_{CP} affected by x of interacting partons ?

$$\begin{aligned} x_{p} &= \frac{p_{\mathrm{T},1} e^{y_{1}^{\mathrm{c.m.}}} + p_{\mathrm{T},2} e^{y_{2}^{\mathrm{c.m.}}}}{\sqrt{s_{\mathrm{NN}}}} \simeq \frac{2p_{\mathrm{T},\mathrm{Avg}}}{\sqrt{s_{\mathrm{NN}}}} e^{y_{b}} \cosh(y^{*}), \\ x_{\mathrm{Pb}} &= \frac{p_{\mathrm{T},1} e^{-y_{1}^{\mathrm{c.m.}}} + p_{\mathrm{T},2} e^{-y_{2}^{\mathrm{c.m.}}}}{\sqrt{s_{\mathrm{NN}}}} \simeq \frac{2p_{\mathrm{T},\mathrm{Avg}}}{\sqrt{s_{\mathrm{NN}}}} e^{-y_{b}} \cosh(y^{*}), \end{aligned}$$

$$p_{\mathrm{T,Avg}} = \frac{p_{\mathrm{T,1}} + p_{\mathrm{T,2}}}{2}, \quad y_{\mathrm{b}} = \frac{y_{1}^{\mathrm{c.m.}} + y_{2}^{\mathrm{c.m.}}}{2}, \quad \text{and} \quad y^{*} = \frac{|y_{1}^{\mathrm{c.m.}} - y_{2}^{\mathrm{c.m.}}|}{2}$$

F. Krizek, LHCP 2024

7

Centrality dependence of the dijet yield in p-Pb

ATLAS, Phys. Rev. Lett. 132 (2024) 102301

Centrality dependence of the dijet yield in p-Pb

ATLAS, Phys. Rev. Lett. 132 (2024) 102301

Semi-inclusive measurements

Constraints on jet quenching in centrality-dependent p-Pb

ATLAS, Phys. Rev. Lett. 131 (2023) 072301

$$I_{pPb} = \frac{Hadron \ yield \ per \ jet|_{p+Pb}}{Hadron \ yield \ per \ jet|_{p+P}}$$

- Corrected for UE using MB events with similar FCal signal
- Centrality ZDC (spectator neutrons)
- I_{pPb} selfnormalized \Rightarrow does not need $\langle N_{\text{coll}} \rangle$
- Enhancement at near side
- Cronin-like enhancement at low p_{T}

Constraints on jet quenching in centrality-dependent p-Pb

ATLAS, Phys. Rev. Lett. 131 (2023) 072301

ANGANTYR

C. Bierlich at al. JHEP 10 (2018) 134

- PYTHIA based model does not account for QGP
- Reproduces data
- Nearside enhancement is not due to nPDFs & isospin & interaction with QGP

E-loss modeled with PYTHIA parton energy loss constrained to be $0.2 \pm 0.5 \% \Rightarrow$ less than 1.4% at the 90% CL

Search for jet quenching in high-multiplicity pp

- Trigger:
 - Minimum bias (MB)
 - High multiplicity (HM)
- Event activity selection: V0M = V0A + V0C
- HM is 0.1% of MB cross sec. $5 < VOM / \langle VOM \rangle < 9$ $\langle VOM \rangle = average in MB$

F. Krizek, LHCP 2024

Observable: per trigger hadron normalized yield of correlated jets

$$\Delta_{\text{recoil}} \left(\Delta \varphi \right) = \frac{1}{N_{\text{trig}}} \frac{dN_{\text{jet}}}{d\Delta \varphi} \Big|_{\text{TT}\{20,30\} \& p_{\text{T,jet}}^{\text{ch}}} - c_{\text{ref}} \cdot \frac{1}{N_{\text{trig}}} \frac{dN_{\text{jet}}}{d\Delta \varphi} \Big|_{\text{TT}\{6,7\} \& p_{\text{T,jet}}^{\text{ch}}}$$

Yield of uncorrelated jets is subtracted in data-driven way

Search for jet quenching in high-multiplicity pp

- Suppression of back to back correlation in HM w.r.t. MB
- Reproduced by PYTHIA
- F. Krizek, LHCP 2024

Search for jet quenching in high-multiplicity pp ALICE, JHEP 05 (2024) 229

VZERO-

jet 14

- Suppression of back to back correlation in HM w.r.t. MB
- Reproduced by PYTHIA
- F. Krizek, LHCP 2024

Summary

- Jet quenching in small collision systems not seen yet likely to be a small effect
- Jet quenching signatures can be created by event selection biases
 - picking up fluctuations in particle wavefunction when imposing event activity bias
 - NLO processes with multi-jet topology in final state
- We need to understand origin of high- p_T track v_2

CMS-PAS-HIN-23-002

Outlook

OO $\sqrt{s_{NN}}$ = 6.37 TeV run at the LHC in 2025 minimum bias should provide sufficient precision

$$R_{AA}^{\text{min.bias}} = \frac{1}{A^2} \cdot \frac{\mathrm{d}^2 \sigma_{\mathrm{pA}}^{h,j} / \mathrm{d} p_{\mathrm{T}} \mathrm{d} y}{\mathrm{d}^2 \sigma_{\mathrm{pp}}^{h,j} / \mathrm{d} p_{\mathrm{T}} \mathrm{d} y}$$

Huss et al., Phys. Rev. Lett. 126, 192301 (2021)

Backup

Disentangling centrality bias and final-state effect in d-Au PHENIX, arXiv:2303.12899

Avoid usage of Glauber N_{coll} based on y^{dir} :

$R_{dAu}^{\gamma^{dir}} = 1 \Rightarrow$	$N_{\rm coll}^{\rm EXP}(p_T) =$	$Y_{d\mathrm{Au}}^{\gamma^{\mathrm{dir}}}(p_T)$	Cent.	N ^{Glauber}	
		$\overline{Y_{pp}^{\gamma^{\mathrm{dir}}}(p_T)}$	MB	7.6 ± 0.4	7.6 ± 1.2
0	$Y_{dAm}^{\pi^0}$	$Y_{dAu}^{\pi^0}/Y_{nn}^{\pi^0}$	0-5%	18.1±1.2	17.3±2.9
$R_{d\mathrm{Au,EXP}}^{\pi^{+}} =$	$\frac{aAu}{N^{\text{EXP}}V^{\pi^0}} =$	$= \frac{u A d r p p}{V \gamma^{\text{dir}} / V \gamma^{\text{dir}}}$	60-88%	3.2 ± 0.2	3.7 ± 0.6
	$r_{\rm coll}$ r_{pp}	I dAu / I pp			

D. Perepelitsa, arXiv:2404.17660

Partons producing y^{dir} and π^0 have different $x \Rightarrow$ different color fluctuations

Phys. Rev. D 98 (2018), 071502(R)

Semi-inclusive measurements

trigger

in case of no nuclear effects

$$=\frac{\langle T_{AA}\rangle}{\langle T_{AA}\rangle}\cdot\frac{1}{\sigma^{\mathrm{pp}\to\mathrm{trig}+X}}\frac{\mathrm{d}^{2}\sigma^{\mathrm{pp}\to\mathrm{trig}+h/\mathrm{jet}+X}}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}\Delta\varphi}\Big|_{p_{\mathrm{T,trig}}}=\frac{1}{N_{\mathrm{trig}}^{\mathrm{pp}}}\frac{\mathrm{d}^{2}N_{\mathrm{h/jet}}^{\mathrm{pp}}}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}\Delta\varphi}\Big|_{p_{\mathrm{T,trig}}}$$

Correlations of event activity with hard and soft processes in p-Au STAR, arXiv:2404.08784v1

Anticorrelation between average Q^2 of hard scattering in midrapidity and forward EA

- suppression in ratios is not due to jet quenching EA selection biases abundance of Q^2 proceses
- EA bias does not impact dijet acoplanarity and dijet momentum imbalance

9

Flow of high- p_{T} particles in p-Pb from ATLAS

ATLAS, Eur. Phys. J. C 80 (2020) 73

Measurement of the sensitivity of two-particle correlations in pp collisions to the presence of hard scatterings by ATLAS

ATLAS, Phys. Rev. Lett 131 (2023) 162301

Measurement of the sensitivity of two-particle correlations in pp collisions to the presence of hard scatterings by ATLAS

ATLAS, Phys. Rev. Lett 131 (2023) 162301

$$v_n(p_T^b) = v_{n,n}(p_T^a, p_T^b) / \sqrt{v_{n,n}(p_T^a, p_T^a)}$$

Particles associated with jets do not exhibit any significant azimuthal correlations with UE

Summary and outlook

- Jet quenching in small collision systems not seen yet likely to be a small effect
- Jet quenching signatures can be created by event selection biases
 - picking up fluctuations in particle wavefunction when imposing event activity bias
 - NLO processes with multi jet topology in final state
- OO $\sqrt{s_{NN}}$ = 6.37 TeV run at the LHC in 2025 minimum bias should provide sufficient precision

$$R_{\rm AA}^{\rm min.bias} = \frac{1}{A^2} \cdot \frac{\mathrm{d}^2 \sigma_{\rm pA}^{h,j} / \mathrm{d} p_{\rm T} \mathrm{d} y}{\mathrm{d}^2 \sigma_{\rm pp}^{h,j} / \mathrm{d} p_{\rm T} \mathrm{d} y}$$

Huss et al., Phys. Rev. Lett. 126, 192301 (2021)

