Recent experimental results on collectivity in small-systems

Soumya Mohapatra

(Columbia University)

On behalf of the ATLAS and CMS Collaborations

This work is supported by the United States Department of Energy Grant DOE-FG02-86ER-40281

5th June 2024

Boston

LHCP2024

QGP

QGP

Many new measurements performed in last few years some of which will be discussed today.

What about even smaller

6

The ridge in *pp* collisions

- particle correlation measurements.
- Try to further our understanding of the origin of the pp ridge.
 - Does it arise from collective (hydro) behavior? Or is it driven by semi-hard processes? Perhaps related to gluon saturation.
- If latter, then actively selecting/rejecting events with semi-hard processes (low- p_{T} jets) should enhance/weaken the ridge.

Define multiple correlation classes

- *h* : inclusive hadrons (tracks) in the event
- h^{UE} : tracks from the underlying event (UE):
 - require that the track is at least one unit in $|\eta|$ from all jets with $p_T > 15$ GeV

Define multiple correlation classes

- *h* : inclusive hadrons (tracks) in the event
- h^{UE} : tracks from the underlying event (UE):
 - require that the track is at least one unit in $|\eta|$ from all jets with $p_T > 15$ GeV

Define multiple correlation classes

- *h* : inclusive hadrons (tracks) in the event
- h^{UE} : tracks from the underlying event (UE):
 - require that the track is at least one unit in $|\eta|$ from all jets with $p_T > 15$ GeV
- *h*^J: track associated with a jet
 - require that the track is within a 0.4 cone of a $p_T > 40$ GeV Jet

10

v₂ : comparison between cases

- The v_2 values are observed to vary weakly with multiplicity,
 - v₂ values for the h^{UE}-h^{UE} correlations: NoJets, WithJets and All Events are identical
 - Removing particles associated with jet has negligible impact on v_2
 - Presence/absence of Jets in events does not impact the v_2
- $h^{UE} h^J v_2$ consistent with zero within uncertainties
 - Ridge is not related to jets!

v₂ : comparison between cases

- The v_2 values are observed to vary weakly with multiplicity,
 - v₂ values for the h^{UE}-h^{UE} correlations: NoJets, WithJets and All Events are identical
 - Removing particles associated with jet has negligible impact on v_2
 - Presence/absence of Jets in events does not impact the v_2
- $h^{UE} h^J v_2$ consistent with zero within uncertainties
 - Ridge is not related to jets!
 - Behavior is true as function of pT as well.

- CMS measurements to explore if there is "collective" behavior within constituents of high-multiplicity-jet.
 - Align coordinate system with jet-axis ()
 - Measure two-particle correlations in $(\Delta \eta^*, \Delta \phi^*)$ between constituents ullet

CMS: arXiv:2312.17103

13

- CMS measurements to explore if there is "collective" behavior within constituents of high-multiplicity-jet.
 - Align coordinate system with jet-axis $(\eta^*, \Delta \phi^* \rightarrow)$
 - Measure two-particle correlations in $(\Delta \eta^*, \Delta \phi^*)$ between constituents
- Shown here are 2PCs for low-multiplicity and high-multiplicity jets

CMS: arXiv:2312.17103

- 1D correlation functions with Fourier components (Data and MC)
- See small near-side peak for high multiplicity jets the data
- Such a peak is absent in the MC (Pythia/Sherpa)

CMS: arXiv:2312.17103

- The v_2 values vs jet multiplicity in Data and MC
- MC & Data v_2 decreases with multiplicity
 - Consistent for jet multiplicity<80</p>
- For multiplicity>80: v_2 in data increase,
 - Inconsistent with MC
- Indicating of some collective behavior?
 - Need more guidance from theory

CMS: arXiv:2312.17103

Photon-ion and photon-proton collisions

Ultra Peripheral Pb+Pb

EM fields of Lorentz contracted nuclei can be treated as flux of quasi-real photons.

In UPC Pb+Pb collisions, Photons coherently emitted from one Pb nuclei can interact with another: γ +Pb collisions

Ultra Peripheral Pb+*p*

Similar process in UPC Pb+p : γ +p collisions

Also see talk by Joakim Nystrand yesterday

Collectivity in γ +Pb collisions

- The v_2 in γ +Pb are extracted using a non-flow subtraction procedure.
- Correlation in low multiplicity (LM) events subtracted from correlation measured in higher multiplicity (HM) events.
- Subsequently Fourier harmonics v_n , extracted from the "Non-flow" corrected correlation.

ATLAS: Phys. Rev. C. 104 104903

Collectivity in γ +Pb collisions

- $p_{\rm T}$ -differential v_2 comparable with pp over the $0.4-2 \text{ GeV } p_{T} \text{ range.}$
- Can be reproduced by tuning CGC calculations (initial-state effects only).
 - Shu et al., PRD 103, 054017
 - Considerable leeway available in tuning.

ATLAS: Phys. Rev. C. 104 104903

Collectivity in γ +Pb collisions

- - Treating the γ as meson
- Good agreement for v_2 .

Comparison of v_2 , v_3 of multiplicity dependence to 3+1D hydro calculations Zhao, Shen, Schenke, PRL 129, 252302

ATLAS: Phys. Rev. C. 104 104903

First look at *y*+*p* collisions

- Select enriched sample of $\gamma + p$ events in UPC p+Pb collisions.
- Require no neutron on Pb-going size ZDC, as well as a large region with no detector activity on Pb going side.
- Plots show 2D and 1D 2PCs in $\gamma + p$ events and min-bias *p*+Pb events.
- Stronger away-side correlation observed in $\gamma + p$ events compared to min-bias p + Pb.

CMS: Phys. Lett. B 844 (2023) 137905

First look at *y+p* collisions

- Larger v_2 observed in $\gamma + p$ events compared to min-bias events
 - Need to be careful as no "non-flow" subtraction is performed
 - i.e. jet-like correlations dominate the measurement.
- Measurements can extend search for collectivity to γ+p events

CMS: Phys. Lett. B 844 (2023) 137905

Summarv

- Multiple recent measurements from ATLAS and CMS investigate collectivity in small collision systems.
- ATLAS : ridge in *pp* collisions with/without jets, "jet-constituent"-UE correlations
 - low- $p_T v_2$ not affected by presence/absence of jets. (See also ALICE: arXiv:2308.16591)
 - Jet-fragments do not exhibit correlations with UE particles.
 - Hard-scattering & UE-collectivity are uncorrelated!
- CMS : Measured correlations within jet-fragments
 - Correlation in low multiplicity jets consistent with MC generators.
 - Constituents in highest multiplicity jets show hints of collectivity.
- CMS & ATLAS : 2PC measurements in $\gamma + p$ and $\gamma + Pb$ events.
 - Smallest collision systems at the LHC.
- Not covered in this talk: ATLAS and CMS : also measured HF v_2 in pp events.
 - *charm* v_2 consistent with inclusive hadrons, *bottom* v_2 consistent with zero.

Extra-1: HF collectivity in pp collisions

- Measured v_2 of muons produced in the semi-leptonic decays of b and c hadrons.
- Significant anisotropy observed for muons from charm decay: consistent with inclusive hadrons.
- v_2 for muons from b decays consistent with zero.
- These HF anisotropy measurements can lead to further understanding of origin of the pp ridge.

ATLAS : PRL-124, 082301

Extra-2: HF collectivity in *pp* collisions

- v_2 of prompt D⁰ mesons in *pp* collisions.
- Significant anisotropy observed : Comparable to inclusive hadrons.
- Comparable to v_2 in *p*+Pb collisions at similar multiplicity

Extra-3: Long-range correlations in e^+e^- vs pp collisions

- Comparison of ridge-yield in e^+e^- (ALEPH) vs similar multiplicity pp collisions (ALICE).
- pp Yields significantly larger over 8-18 multiplicity range

ALICE: arXiv 2311.14357

ALEPH, A.Badea & collaborators PRL 123,212002

Extra-4: Long-range correlations in e^+e^- collisions

- Data from ALEPH (91 TeV) Similar measurements shown by BELLE Correlations well reproduced by PYTHIA6 No indications of ridge in high-multiplicity events.

- Possibilities
 - Not high-enough energy density (P. Castorina et al, arXiv:2011.06966)
 - Not expected in a single color-string (J. Nagle et al, PRC 97, 024909 (2018))

27

Extra-5: And in *ep* collisions

- *ep* measurements at HERA
- Measured using 4-particle cumulants
 - Consistent with no collectivity