Recent experimental results on collectivity in small-systems

Soumya Mohapatra
(Columbia University)
On behalf of the ATLAS and CMS Collaborations

This work is supported by the United States Department of Energy Grant
DOE-FG02-86ER-40281
QGP in small systems?

Ion-ion QGP

Proton-ion QGP?
QGP in small systems?

- **ion-ion**
 - QGP
 - ✔️

- **proton-ion**
 - QGP
 - ✔️
QGP in small systems?

- ion-ion QGP ✓
- proton-ion QGP ✓
- proton-proton QGP ?
QGP in small systems?

Many new measurements performed in last few years some of which will be discussed today.
QGP in small systems?

- ion-ion: QGP
- proton-ion: QGP
- proton-proton: ?
- photon-ion: QGP
- photon-proton: What about even smaller systems?
First indication of “collective behavior” in pp collisions was the observation of the ridge in two-particle correlation measurements.

Try to further our understanding of the origin of the pp ridge.
- Does it arise from collective (hydro) behavior?
- Or is it driven by semi-hard processes? Perhaps related to gluon saturation.

If latter, then actively selecting/rejecting events with semi-hard processes (low-p_T jets) should enhance/weaken the ridge.
Define multiple correlation classes

- h: inclusive hadrons (tracks) in the event
- h^{UE}: tracks from the underlying event (UE):
 - require that the track is at least one unit in $|\eta|$ from all jets with $p_T > 15$ GeV
Define multiple correlation classes

- h: inclusive hadrons (tracks) in the event
- h_{UE}: tracks from the underlying event (UE):
 - require that the track is at least one unit in \(|\eta|\) from all jets with $p_T > 15$ GeV

![Diagram showing h_{UE} and h in ϕ and η planes with regions for rejected and accepted particles.](image)
Define multiple correlation classes

- h: inclusive hadrons (tracks) in the event
- h^{UE}: tracks from the underlying event (UE):
 - require that the track is at least one unit in $|\eta|$ from all jets with $p_T > 15$ GeV
- h^J: track associated with a jet
 - require that the track is within a 0.4 cone of a $p_T > 40$ GeV Jet
The v_2 values are observed to vary weakly with multiplicity,

- v_2 values for the h^{UE}-h^{UE} correlations: NoJets, WithJets and All Events are identical
- Removing particles associated with jet has negligible impact on v_2
- Presence/absence of Jets in events does not impact the v_2

- h^{UE}-h^{J} v_2 consistent with zero within uncertainties
- Ridge is not related to jets!
\(v_2 \) : comparison between cases

- The \(v_2 \) values are observed to vary weakly with multiplicity,
 - \(v_2 \) values for the \(h^{UE-h^{UE}} \) correlations: NoJets, WithJets and All Events are identical
 - Removing particles associated with jet has negligible impact on \(v_2 \)
 - Presence/absence of Jets in events does not impact the \(v_2 \)
- \(h^{UE-h^{J}} \) \(v_2 \) consistent with zero within uncertainties
 - Ridge is not related to jets!
 - Behavior is true as function of pT as well.

ATLAS: PRL 131 (2023) 162301
• CMS measurements to explore if there is “collective” behavior within constituents of high-multiplicity-jet.
 • Align coordinate system with jet-axis (\(\eta^*\))
 • Measure two-particle correlations in \((\Delta\eta^*, \Delta\phi^*)\) between constituents
• CMS measurements to explore if there is “collective” behavior within constituents of high-multiplicity-jet.
 • Align coordinate system with jet-axis ($\eta^*, \Delta\phi^* \rightarrow$)
 • Measure two-particle correlations in ($\Delta\eta^*, \Delta\phi^*$) between constituents
• Shown here are 2PCs for low-multiplicity and high-multiplicity jets

CMS: arXiv:2312.17103
Intra-jet Collectivity

- 1D correlation functions with Fourier components (Data and MC)
- See small near-side peak for high multiplicity jets the data
- Such a peak is absent in the MC (Pythia/Sherpa)
Intra-jet Collectivity

- The v_2 values vs jet multiplicity in Data and MC
 - MC & Data v_2 decreases with multiplicity
 - Consistent for jet multiplicity < 80
 - For multiplicity > 80: v_2 in data increase,
 - Inconsistent with MC

- Indicating of some collective behavior?
 - Need more guidance from theory

CMS: arXiv:2312.17103
Photon-ion and photon-proton collisions

Ultra Peripheral Pb+Pb

EM fields of Lorentz contracted nuclei can be treated as flux of quasi-real photons.

In UPC Pb+Pb collisions, Photons coherently emitted from one Pb nuclei can interact with another: γ+Pb collisions

Ultra Peripheral Pb+p

Similar process in UPC Pb+p : γ+p collisions

Also see talk by Joakim Nystrand yesterday
- The v_2 in γ+Pb are extracted using a non-flow subtraction procedure.
- Correlation in low multiplicity (LM) events subtracted from correlation measured in higher multiplicity (HM) events.
- Subsequently Fourier harmonics v_n, extracted from the “Non-flow” corrected correlation.
Collectivity in γ+Pb collisions

- p_T-differential v_2 comparable with pp over the 0.4-2 GeV p_T range.
- Can be reproduced by tuning CGC calculations (initial-state effects only).
 - Shu et al., PRD 103, 054017
 - Considerable leeway available in tuning.

ATLAS: Phys. Rev. C. 104 104903
Collectivity in γ+Pb collisions

- Comparison of v_2, v_3 of multiplicity dependence to 3+1D hydro calculations
 - Zhao, Shen, Schenke, PRL 129, 252302
 - Treating the γ as meson
 - Good agreement for v_2.

ATLAS: Phys. Rev. C. 104 104903
First look at $\gamma+p$ collisions

- Select enriched sample of $\gamma+p$ events in UPC $p+Pb$ collisions.
- Require no neutron on Pb-going size ZDC, as well as a large region with no detector activity on Pb going side.
- Plots show 2D and 1D 2PCs in $\gamma+p$ events and min-bias $p+Pb$ events.
- Stronger away-side correlation observed in $\gamma+p$ events compared to min-bias $p+Pb$.

First look at $\gamma+p$ collisions

- Larger v_2 observed in $\gamma+p$ events compared to min-bias events
 - Need to be careful as no "non-flow" subtraction is performed
 - i.e. jet-like correlations dominate the measurement.
- Measurements can extend search for collectivity to $\gamma+p$ events
Multiple recent measurements from ATLAS and CMS investigate collectivity in small collision systems.

ATLAS: ridge in pp collisions with/without jets, “jet-constituent”-UE correlations
- low-p_T v_2 not affected by presence/absence of jets. (See also ALICE: arXiv:2308.16591)
- Jet-fragments do not exhibit correlations with UE particles.
- Hard-scattering & UE-collectivity are uncorrelated!

CMS: Measured correlations within jet-fragments
- Correlation in low multiplicity jets consistent with MC generators.
- Constituents in highest multiplicity jets show hints of collectivity.

CMS & ATLAS: 2PC measurements in $\gamma+p$ and $\gamma+Pb$ events.
- Smallest collision systems at the LHC.

Not covered in this talk: ATLAS and CMS: also measured HF v_2 in pp events.
- charm v_2 consistent with inclusive hadrons, bottom v_2 consistent with zero.
• Measured v_2 of muons produced in the semi-leptonic decays of b and c hadrons.

• Significant anisotropy observed for muons from charm decay: consistent with inclusive hadrons.

• v_2 for muons from b decays consistent with zero.

• These HF anisotropy measurements can lead to further understanding of origin of the pp ridge.
Extra-2: HF collectivity in \(pp \) collisions

HF collectivity can potentially separate initial vs final-state effects

\(v_2 \) of prompt \(D^0 \) mesons in \(pp \) collisions.

Significant anisotropy observed: Comparable to inclusive hadrons.

Comparable to \(v_2 \) in \(p+\text{Pb} \) collisions at similar multiplicity.

CMS: PLB 813,136036
Comparison of ridge-yield in e^+e^- (ALEPH) vs similar multiplicity pp collisions (ALICE).

pp Yields significantly larger over 8-18 multiplicity range
Data from ALEPH (91 TeV)
- Similar measurements shown by BELLE
- Correlations well reproduced by PYTHIA6
- No indications of ridge in high-multiplicity events.

Possibilities
- Not high-enough energy density (P. Castorina et al, arXiv:2011.06966)
- Not expected in a single color-string (J. Nagle et al, PRC 97, 024909 (2018))
Extra-5: And in \(ep\) collisions

- \(ep\) measurements at HERA
- Measured using 4-particle cumulants
 - Consistent with no collectivity