Particle production vs multiplicity in small systems

M. Sarpis, V. Zhovkovska

Hadronisation mechanism: Probes

Heavy quarks production is a powerful probe of hadronisation mechanism:

- produced at initial stages of collision
- depend on the parton distribution functions of the incoming nucleons, the hard parton-parton scattering cross-section, and the fragmentation functions
- hadronisation is assumed to be universal
- Hadronisation mechanism:
 - fragmentation: partons fragment into hadrons at low multiplicity
 - coalescence: quarks overlap in velocity-position space forming hadrons at high multiplicity
 - co-mover effect: loosely bound states can dissociate in the interaction with co-moving particles

Hadronisation mechanism: Observables

- With increase of the size of the collision system QGP effects may appear
- **Production**:
 - kinematic dependencies affected by medium (fragmentation vs coalescence at low vs high $p_{\rm T}$)
 - nuclear modification factor (medium temperature and density, coalescence and co-mover effect)
 - relative ratios (co-mover effect for quarkonia, strangeness enhancement)
- **Correlations**:

 - forward-backward asymmetries
 - . . .
- Many different ways to probe hardronisation and QGP effects

multiplicity dependence (breaking of factorisation of b quark hadronisation in different collision systems)

Multiplicity variables

- Various multiplicity observables are available for different experiments: # of primary vertices (PVs), # of tracks associated with a PV, # of clusters in calorimeter...
- For universality an observable has to be normalised to a minimum/no bias average value
- Common choice of variables:
 - LHCb: # of forward tracks (correlated) and # of backward tracks (non-correlated)
 - LHCb, CMS: # of tracks associated with a PV (for LHCb \approx # of fw + # of bw) local multiplicity
 - ALICE: deposited charge local multiplicity
 - ALICE: spherocity topology in the azimuthal plane

$$S_{\rm O}^{p_{\rm T}=1} = \frac{\pi^2}{4} \min_{\hat{n}} \left(\frac{\Sigma_i |\hat{p}_{{\rm T},i} \times \hat{n}|}{N_{\rm trks}} \right)^2$$

- transverse momentum unit vector \hat{n} - unit vector that minimizes $S_{\alpha}^{p_{\rm T}=1}$ N_{trks} - number of charged particles

Recent results

• Observation of strangeness enhancement with charmed mesons in high-multiplicity pPb collisions at $\sqrt{s} = 8.16$ TeV

- LHCb [<u>arXiv:2311.08490</u>]
- Multiplicity dependence of $\sigma_{\psi(2S)}/\sigma_{J/\psi}$ in pp collisions at $\sqrt{s}=13$ TeV
 - LHCb [arXiv:2312.15201]
- Evidence for modification of b quark hadronization in high-multiplicity pp collisions at $\sqrt{s}=13$ TeV
 - LHCb [Phys. Rev. Lett. 131, 061901]
- Enhanced production of Λ_h^0 baryons in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV
 - LHCb [Phys. Rev. Lett. 132, 081901]
- - ALICE [JHEP 05 (2024) 184]
- Investigating strangeness enhancement with multiplicity in pp collisions using angular correlations
 - ALICE [<u>arXiv:2405.14511</u>]
- Measurement of the B^+ differential cross section as a function of transverse momentum and multiplicity in pPb collisions at $\sqrt{s} = 8.16 \text{ TeV}$
 - CMS [<u>CMS PAS HIN-22-001</u>]

• Light-flavor particle production in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV as a function of transverse spherocity

Light-flavour production

JHEP 05 (2024) 184

- Production of $p, \phi, \Lambda, \Xi, K^{*0}, K^{\pm}$ and K_s^0 in pp co
- jet-like topology

ollisions at
$$\sqrt{s}=13$$
 TeV

Enhancement of strange hadrons in events with an isotropic topology, and a strong suppression in events with a

Baryon-to-meson ratio shows enhancement at mid $p_{\rm T}$, without depletion of low- $p_{\rm T}$ particles for jet-like events

Light-flavour production

JHEP 05 (2024) 184

- Relative integrated strange particle yield to pions as function of $S_{O}^{p_{\rm T}=1}$
- Strangeness enhancement achieved by fixing the local charged particle density and varying the azimuthal topology, instead of varying charged-particle density
- More than one contribution to particle production at high multiplicity
- No significant strangeness enhancement or suppression within systematic uncertainties when multiplicity is estimated using the forward rapidity estimator
- Average high-multiplicity events are dominated by soft processes, when hard processes play little or no role for bulk observables

$\psi(2S)/J/\psi$ ratios

arXiv:2312.15201

- Quarkonia production suppression at high multiplicity in small systems may indicate presence of QGP or co-mover effect
- Observation of production ratios can mitigate initial-state effects; however, observed suppression for excited states points to additional existing effects

Prompt production ratio decreases with multiplicity

- The effect is less visible for N_{bwd}^{PV} multiplicity, suggesting correlation between suppression and local multiplicity; **possible indication of** co-mover effect
- Weak dependence may be explained by the correlation between N_{bwd}^{PV} and N_{fwd}^{PV}

$K_{\rm c}^0$ and Ξ^{\pm} production

arXiv:2405.14511

Production measurement in pp collisions at $\sqrt{s} = 5.02$ and 13 TeV in the direction of the highest- $p_{\rm T}$ charged particle and transverse to it

- (higher strangeness)

• Toward-leading $p_{\rm T}$ (hard scattering processes) spectra are harder than transverse-to-leading ones (production related to the underlying event)

• Milder multiplicity dependence in toward-leading yields; contribution of transverseto-leading process increases with multiplicity

• Relative Ξ^{\pm}/K_{c}^{0} production is favoured in transverse-to-leading processes

Models cannot quantitatively describe the production

D_s^+/D^+ ratios

arXiv:2311.08490

- Study of nuclear modification factor $R_{\rm pPb}$ provides a test of the universality of hadronisation mechanism
- Theoretical predictions tuned using previous measurements are available
- Results for
 - forward region $2.0 < y^* < 4.0$ show significant suppression for both D^0 and D_s^0 , and in good agreement with predictions
 - backward region $-4.5 < y^* < -2.5$ are below theoretical predictions, indicating possible final-state effects depending on charm hadronisation

D_s^+/D^+ ratios

arXiv:2311.08490

- Forward-backward asymmetry $R_{\rm FB}$ allows to test production mechanism depending on the longitudinal momentum fraction x carried by a parton
- The results show strong dependence on $p_{\rm T}$, contrary to the theoretical prediction;
- The discrepancies for $R_{\rm FB}$ and $R_{p\rm Pb}$ may originate from the suppression of high- $p_{\rm T} D_{(s)}^0$ mesons at backward rapidity

$D_{\rm s}^+/D^+$ ratios

arXiv:2311.08490

- Multiplicity dependence of the D_{c}^{0}/D^{0} ratio demonstrates strangeness enhancement at high multiplicity
- Dependence is weaker at high $p_{\rm T}$; agrees with observations for bquark hadronisation
- **First observation** of this effect, consistent with the coalescence mechanism

 $B_{\rm s}^0/B^0$ ratios

Phys. Rev. Lett. 131, 061901

- Dependencies the B_s^0/B^0 ratio studied for two variables:
 - increasing trend for local multiplicity, compatible with results from e^+e^- collisions at low multiplicity (pure fragmentation)
 - no dependence on backward multiplicity

• Results indicate possible presence of the coalescence mechanism

 $B_{\rm s}^0/B^0$ ratios

Phys. Rev. Lett. 131, 061901

- Ratio increase (3.4 σ) at low $p_{\rm T}$, compatible with results from e^+e^- collisions at low multiplicity
- No significant dependence at high $p_{\rm T}$, compatible with results from e^+e^- collisions
- All results are in agreement with PYTHIA calculations
- Results at low $p_{\rm T}$ have closer trend to the model with color reconnection; however, agree within uncertainties with both calculations
- **Consistent with the** presence of the coalescence mechanism

 Λ_b^0/B^0 ratios

Phys. Rev. Lett. 132, 081901

- Good agreement with $\Lambda_b^0/(B^0 + B^+)$ in pp and Λ_b^0/B^0 in pPb
- Statistical hadronisation
 - with relativistic quark model (RQM) at mid p_{T}
 - with measured spectrum from PDG at low and high p_{T}
- Pure fragmentation describes data only at high p_{T}
- Coalescence may contribute at low $p_{\rm T}$

Multiplicity dependence:

- approaching e^+e^- collisions data at low multiplicity; fragmentation in vacuum
- rise and plateau at higher multiplicity; a hint of additional contribution to production from coalescence mechanism

 Λ_b^0/B^0 ratios

Phys. Rev. Lett. 132, 081901

- Multiplicity dependence weakens with $p_{\rm T}$ converging to the value measured in e^+e^- collisions
 - low $p_{\rm T}$: coalescence with b-quark combining with light quarks
 - high $p_{\rm T}$: *b*-quark fragmentation in vacuum

Significant multiplicity dependence for both metrics, however, more pronounced for the total number of VELO tracks

B^+ production

CMS PAS HIN-22-001

- First measurement of B^+ production dependency on multiplicity in pPbcollisions
- Good agreement of $p_{\rm T}$ -differential production cross-section with FONLL predictions
 - The predictions are done for *pp* collisions and scaled by A = 208for *pPb* collisions
- Slightly higher production at high multiplicity

Summary

- Multiple measurements indicate presence of additional hadronisation mechanism:
 - strangeness enhancement with local multiplicity increase at low p_{T}
 - absence of dependency on backward multiplicity
 - high $p_{\rm T}$ data are consistent with fragmentation in vacuum (results from e^+e^-)
- Contrary to the theoretical prediction, $R_{\rm FB}$ for $D_{(s)}^0$ shows strong dependence on $p_{\rm T}$, and stronger suppression for R_{pPb}
- Relative Ξ^{\pm}/K_{c}^{0} production is favoured in transverse-to-leading processes
- Prompt $\psi(2S)/J/\psi$ ratio depends significantly on local multiplicity, but weaker on backward multiplicity; possible indication of co-mover effect
- **Different behaviour** in pp and pPb collisions from e^+e^- is a hint of breaking universality of hadronisation mechanism

$\psi(2S)/J/\psi$ ratios

arXiv:2312.15201

- **Different behaviour for prompt ratio in** $p_{\rm T}$ **bins**, consistent with other existing measurements:
 - suppression at high multiplicity for low $p_{\rm T}$
 - no significant dependence for high $p_{\rm T}$
- No dependence on y

Integrated and $p_{\rm T}$ -differential ratios are in good agreement with other existing results

Multiplicity variables

- Various multiplicity observables are available for different experiments:
 # of primary vertices (PVs), # of tracks associated with a PV, # of clusters in calorimeter...
- For universality an observable has to be normalised to a minimum/no bias average value
- LHCb is a forward-arm spectrometer covering pseudorapidity range $2 < \eta < 5$
 - LHCb VErtex LOcator (VELO) has sensors in both forward and backward rapidity regions
- Common choice of variables:
 - # of forward tracks
 - # of backward tracks non-correlated multiplicity
 - # of tracks associated with a PV \approx # of fw + # of bw local multiplicity

