Global discussion on the Limits of QGP formation

LHCP 2024

5th June 2024

Traditional signatures of QGP

- Azimuthal anisotropy \rightarrow Preferred orientations due to pressure gradients (hydro).
 - Mass ordering, # quarks scaling.
- Jet quenching \rightarrow E. loss in deconfined QCD matter.
- Quarkonia suppression \rightarrow Sequential suppression as a sign of quarkonia "melting" in QGP.
- Strangeness enhancement \rightarrow Thermal production due to high-enough energy density QGP.

Complications in QGP searches in small systems

- Azimuthal anisotropy \rightarrow Hydro. vs shoving/pQCD inspired models.
- Jet quenching \rightarrow No evidence.
- Quarkonia suppression \rightarrow QGP droplet vs co-mover interactions. Final, not initial effect.
- Strangeness enhancement and hierarchy with strangeness content → QGP vs pQCD inspired models.

Puzzles in small systems

- v_2 in high mult pPb vs p_T , PID dependence, p_T splitting similar to AA
 - Described by hydro + coalescence + fragmentation.
 - Some differences seen in low mult pPb and pp.
 - Ridge and v_2 present in low mult pp and e^+e^- .
- No jet quenching in small systems?
 - \circ R_{AA} and Q_{pA} consistent with unity.
 - But high $p_T v_2$ similar to PbPb \rightarrow traditionally understood as jet quenching.
 - Influence of selection bias?
 - Quenching models describing v_2 expect E. loss.
- Non-hydro models describe some measurements, but not all.

Up for discussion:

- Is a nonzero v_2 a robust indicator of collective effects?
 - Should we be more careful about considering biases when measuring and interpreting v_2 ? Or do same physics mechanisms give v_2 in small and large systems? Ο
 - Ο
- Is hydrodynamics applicable in all systems?
 - If it is not hydro in small systems, is it hydro in large systems? Ο
- Question to Angantyr
 - Would it be possible to describe $v_2 vs p_T$, vs PID? Ο
 - v_2 across centralities and $R_{\Delta\Delta}$ in heavy-ion collisions. Ο
- What to look forward to from Run 3&4 data at the LHC, and at RHIC?
 - High $p_{\tau} v_2$ measurements in pp. Ο
 - New observables? Ο
 - How can OO run help? Ο
 - Can we find the wake in large systems? Validation of hydro. 0
- What input do we need from theorists?

Back Up

v_2 in p-Pb and pp

v₂ in very low multiplicity events

"One fluid to rule them all"

Even if hydro applies...

$v_2 - \langle p_T \rangle$ correlation

 $<p_{T}>$ rises when going from peripheral to central collisions

while v_2 decreases \rightarrow anti-correlated in a geometrical model.

Challenges geometrical picture?

Even if hydro applies...

1801.00271

No quenching in small systems

But there is high $p_T v_2$ in pPb (at pp consistent with zero with uncertainties).

- What is the mechanism? In large systems, it is quenching.
- Can we go higher in p_T both in pPb in pp?

Strangeness enhancement

arXiv:2311.08490

Final State Interactions

- Angantyr model obtains many traditional signatures of QGP, without QGP.
- However, needs final state interactions & spacetime picture (geometry):
 - Interactions among non-perturbative strings, flux tubes.
 - Interactions among hadrons.
 - What about interactions among partons, shower modification (beyond Color Reconn.)?
 - v₂ in high N_{ch} jets could be explained by this partonic rescatterings.
 (<u>https://arxiv.org/pdf/2401.13137</u>)
- How far can one go without final state partonic interactions (i.e. w/o QGP?)