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Introduction

Motivation: to probe the medium formed in heavy ion
collisions
▶ the medium formed in current heavy ion collision experiments

provides an unprecedented window into the Universe in the
first moments after the Big Bang

▶ energy densities are possibly sufficiently high to create a
deconfined quark gluon plasma (QGP) in which quarks and
gluons propagate freely

▶ due to their large mass and short formation times, heavy
quarks, and specifically their bound states, provide ideal
probes of the QGP

▶ Matsui and Satz1 postulated heavy quarkonium suppression (a
reduction in the yields of heavy quark-antiquark states states
in heavy ion collisions relative to proton-proton collisions) as a
signature that such a deconfined medium is indeed created

1Phys. Lett. B178, 416 (1986)
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Theory Approaches

Plethora of Models and Approaches

▶ Duke-MIT approach, Munich-KSU approach, Nantes model,
parton-hadron string dynamics, Saclay model, Santiago
comover interaction model, statistical hadronization model,
Texas A&M model, Tsingua model, cold nuclear matter effects

Different Evolution Equations

▶ Lindblad equation, Langevin equation, Boltzmann equation

Theory Status summarized in recent publication

▶ Eur. Phys. J. A 60 (2024) 4, 88 (Andronic, et. al.)
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Physical Setup

M 5

1/a0 1.5

πT ∼ τ−1
E

E ∼ τ−1
S 0.5

µ [GeV]

▶ hierarchically ordered scales of the
problem are heavy quark mass M,
(inverse) Bohr radius a0 of bound
state, (π times) medium temperature
T and binding energy E of state

▶ dimensionful quantities of combined
system define the system intrinsic time
scale τS , the environment correlation
timescale τE and relaxation time
τR ∼ a−2

0 (πT )−3
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Method

▶ theory tools:2

▶ Open Quantum Systems: allows for the rigorous treatment of
a quantum system of interest coupled to and evolving out of
equilibrium with an environment

▶ Effective Field Theories: allow to systematically exploit
hierarchies of scale in physical systems to isolate contributions
from the relevant scales

▶ use these tools to derive an evolution equation describing the
in-medium evolution of heavy quarkonium

▶ use computational tools to solve the resulting equations and
extract observables of interest for comparison against
experiment including the nuclear modification factor RAA and
the elliptic flow v2

2see references in Eur. Phys. J. A 60 (2024) 4, 88 (Andronic, et. al.)



5/17

Hierarchies and Simplifying Assumptions

quantum Brownian motion

for
τR , τS ≫ τE ,

3

where τR , τS , and τE are the relaxation, system intrinsic, and
environment correlation time scales, respectively, the system
realizes quantum Brownian motion

Simplifying Approximations

hierarchy of scales allows for two simplifying approximations:

▶ Born approximation: quarkonium has little effect on the
medium at time scales of interest; density matrix factorizes

▶ Markov approximation: only the state of the quarkonium at
time t is necessary to describe its evolution at time t

3in lower temperature regime, τR ≫ τS , τE is realized and system is in
quantum optic limit
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Nonrelativistic EFTs of QCD

pNRQCD

NRQCD

QCD

Mv2

Mv

M

µ

▶ due to heavy quark mass M, the
relative velocity in a heavy-heavy
bound state is small: i.e., v ≪ 1 and
the system is nonrelativistic

▶ integrating out the hard scale M gives
rise to NRQCD

▶ integrating out the soft scale Mv gives
rise to pNRQCD; degrees of freedom
are color singlet (heavy quarkonium)
bound states and color octet
(unbound, open flavor) scattering
states interacting with gluons at the
ultrasoft scale Mv2
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Diagrammatic Evolution of ρs(t)
4

singlet evolution given by

dρs(t)

dt
= −i [hs , ρs(t)]− Σsρs(t)− ρs(t)Σ

†
s + Ξso(ρo(t))

where

Σsρs(t) ∼

Ξso(ρo(t)) ∼

4Phys. Rev. D 97 (2018) 7, 074009 (Brambilla, Escobedo, Soto, Vairo)
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Diagramatic Evolution of ρo(t)
5

octet evolution given by

dρo(t)

dt
= −i [ho , ρo(t)]−Σoρo(t)−ρo(t)Σ†

o+Ξos(ρs(t))+Ξoo(ρo(t))

where

Σoρo(t) ∼ +

Ξos(ρs(t)) ∼

Ξoo(ρo(t)) ∼

5Phys. Rev. D 97 (2018) 7, 074009
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Evolution as Lindblad Equation6

dρ(t)

dt
= −i [H, ρ(t)] +

∑
n

[
Cn
i ρ(t)C

n†
i − 1

2
{Cn†

i Cn
i , ρ(t)}

]
,

H =

(
hs 0
0 ho

)
+

(
r2

2
γ +

κ

4MT
{ri , pi}

)(
1 0

0 N2
c−2

2(N2
c−1)

)
,

C 0
i =

√
κ

N2
c − 1

(
r i +

ipi
2MT

+
∆Vos

4T
ri

)(
0 1
0 0

)
+
√
κ

(
ri +

ipi
2MT

+
∆Vos

4T
ri

)(
0 0
1 0

)
,

C 1
i =

√
(N2

c − 4)κ

2(N2
c − 1)

(
ri +

ipi
2MT

)(
0 0
0 1

)
free parameters are κ and γ which we extract from lattice data

6Phys.Rev.D 108 (2023) 1, L011502 (Brambilla, Escobedo, Islam,
Strickland, Tiwari, Vairo, PVG)
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QTraj Implementation7

1. initialize wave function |ψ(t0)⟩
2. generate random number 0 < r1 < 1, evolve with Heff until

|| e−i
∫ t
t0
dt′Heff(t

′)|ψ(t0)⟩ ||2 ≤ r1,

and initiate a quantum jump
3. quantum jump

3.1 if singlet, jump to octet; if octet, generate random number
0 < r2 < 1 and jump to singlet if r2 less than the branching
fraction to singlet; otherwise, remain in octet

3.2 generate random number 0 < r3 < 1; if r3 < l/(2l + 1),
l → l − 1; otherwise, l → l + 1.

3.3 multiply wavefunction by r and normalize

4. Continue from step 2.

7Comput. Phys. Commun. 273 (2022) 108266 (Ba Omar, et. al.)
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Medium Interaction

▶ medium evolution implemented using a 3 + 1D dissipative
relativistic hydrodynamics code using a realistic equation of
state fit to lattice QCD measurements

▶ approximately 1− 2× 105 physical trajectories
▶ production point sampled in transverse plane using nuclear

binary collision overlap profile Nbin
AA(x , y , b), initial pT from an

E−4
T spectrum, and ϕ uniformly in [0, 2π)

▶ ∼30 quantum trajectories per physical trajectory
▶ allows for computing observables as a function of transverse

momentum pT
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Nuclear Modification Factor RAA
8
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Figure: RAA of the Υ(1S), Υ(2S) and
Υ(3S) as a function of Npart; experimental
data from the ALICE, ATLAS and CMS
collaborations.

▶ state of the art
extraction of RAA

using 3-loop
potentials with
excellent agreement
with vacuum
spectrum

▶ LO in E/(πT )
expansion →
coupling to medium
terminated at
TF = 250 MeV

82403.15545 (Brambilla, Magorsch, Strickland, Vairo, PVG) (to appear in
Phys. Rev. D)
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Nuclear Modification Factor RAA
9
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Figure: RAA of the Υ(1S), Υ(2S) and
Υ(3S) as a function of pT ; experimental
data from the ALICE, ATLAS and CMS
collaborations.

▶ extraction of RAA

using Coulomb
potentials

▶ NLO in E/(πT )
expansion allowing
coupling to medium
to TF = 190 MeV

▶ regeneration
necessary to match
experimental data

9Phys.Rev.D 108 (2023) 1, L011502 (Brambilla, Escobedo, Islam,
Strickland, Tiwari, Vairo, PVG)
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Double Ratio 2S/1S10

QTraj -With Jumps

QTraj -Without Jumps

ATLAS

CMS

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

Npart

[Υ
(2
S
)/
Υ
(1
S
)]
P
bP
b
/[
Υ
(2
S
)/
Υ
(1
S
)]
pp

κ = 4, γ = 0, TF = 190 MeV, τmed = 0.6 fm

QTraj -With Jumps

QTraj -Without Jumps

ATLAS

CMS (2019)

CMS (2023)

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

pT [GeV]

[Υ
(2
S
)/
Υ
(1
S
)]
P
bP
b
/[
Υ
(2
S
)/
Υ
(1
S
)]
pp

κ = 4, γ = 0, TF = 190 MeV, τmed = 0.6 fm

Figure: Double ratio of RAA(2S) to RAA(1S) as a function of Npart (left)
and pT (right); experimental data from the ATLAS and CMS
collaborations.

10Phys.Rev.D 108 (2023) 1, L011502
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Double Ratio 3S/2S11
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Figure: Double ratio of RAA(3S) to RAA(2S) as a function of Npart (left)
and pT (right); experimental data from the CMS collaborations.

11Phys.Rev.D 108 (2023) 1, L011502
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Elliptic Flow v2
12
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Figure: Elliptic flow v2 of the Υ(1S) as a function of Npart (left) and pT
(right); experimental data from the CMS and Alice collaborations. Older
result with Coulomb potential at LO in E/(πT ) with Tf = 250 MeV.

12Phys.Rev.D 104 (2021) 9, 094049 (Brambilla, Escobedo, Strickland, Vairo,
PVG, Weber)
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Conclusions

▶ due to hierarchies of scale, system of in-medium bottomonium
ideally described using EFT methods, specifically pNRQCD,
and the OQS formalism

▶ evolution equation takes the form of a Lindblad equation

▶ computational methods necessary to solve the Lindblad
equation and extract the nuclear modification factor RAA

▶ use QTraj code to solve the Lindblad equation and extract
RAA and v2 of ground and excited states as functions of Npart

and pT
▶ quantum recombination necessary to match experimental data

▶ method and results are fully quantum, non abelian, and heavy
quark number conserving; take into account dissociation and
recombination; and depend only on the transport coefficients
κ and γ
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Elliptic Flow v2 of Excited States13
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Figure: Elliptic flow v2 of the Υ(2S) and Υ(3S) as a function of Npart;
experimental data from the CMS collaboration. Coulomb potential at LO
in E/(πT ) with Tf = 250 MeV.

13Phys.Rev.D 104 (2021) 9, 094049 (Brambilla, Escobedo, Strickland, Vairo,
PVG, Weber)
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pNRQCD Lagrangian

LpNRQCD = Tr

[
S†(i∂0 − hs)S + O†(iD0 − ho)O + O†r · g ES

+S†r · g EO +
1

2
O† {r · g E , O}

]

▶ singlet and octet field S and O interacting via chromo-electric
dipole vertices

▶ hs,o = p2

M + Vs,o : singlet, octet Hamiltonian

▶ Vs = −Cf αs (1/a0)
r : attractive singlet potential

▶ Vo = αs (1/a0)
2Nc r

: repulsive octet potential
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Quantum Trajectories Algorithm
▶ Monte Carlo method to solve the Lindblad equation

▶ less memory intensive due to use of wave function |ψ⟩ rather
than density matrix ρ

▶ absorb quantum number conserving diagonal evolution terms
of Lindblad equation into a non-Hermitian effective
Hamiltonian

Heff = H − i

2

∑
n

C †
nCn

Lindblad equation becomes

dρ(t)

dt
= −i

(
Heff ρ(t)− ρ(t)H†

eff

)
+
∑
n

Cn
i ρ(t)C

n†
i

▶ Heff term reduces trace of ρ and preserves quantum numbers
of state

▶ Cn term changes quantum numbers of state and ensure
overall evolution is trace preserving
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Heff Evolution

▶ evolve wavefunction with Heff

|ψ(t + δt)⟩ = (1− iHeff δt)|ψ(t)⟩

▶ Heff evolution preserves quantum numbers of the state and
decreases its norm

⟨ψ(t + δt)|ψ(t + δt)⟩ ≈ 1− i⟨ψ(t)|(Heff − H†
eff )|ψ(t)⟩δt

= 1− δp

where

δp =
∑
n

⟨ψ(t)|C †
nCn|ψ(t)⟩δt =

∑
n

δpn

▶ decrease in norm related to probability a change of quantum
numbers, implemented by Cn|ψ(t)⟩, occurs
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Monte Carlo

(normalized) evolution of state

|ψ̃(t + δt)⟩ =


|ψ(t+δt)⟩√

1−δp with probability 1− δp

Cn|ψ(t)⟩√
δpn/δt

with probability δp

i.e., with probability 1− δp, the state evolves as governed by Heff ,
and with probability δp, is acted on by the collapse operator Cn

simulation
▶ generate a random number 0 < r1 < 1

▶ evolve state with Heff until norm squared < r1
▶ generate additional random number(s) to determine which

collapse operator Cn to apply
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Equivalence of Evolution and Convergence

equivalence of evolution

ρ(t + δt) =(1− δp)
|ψ(t + δt)⟩√

1− δp

⟨ψ(t + δt)|√
1− δp

+ δp
∑
n

δpn
δp

Cn|ψ(t)⟩√
δpn/δt

⟨ψ(t)|C †
n√

δpn/δt

=ρ(t)− i [Heff ρ(t)− ρ(t)H†
eff ]δt +

∑
n

Cnρ(t)C
†
nδt,

as given by Lindblad equation

convergence

▶ calculate expectation values using evolved state

▶ evolve many states and average to converge to result of
directly solving the Lindblad equation
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Tf Variation14
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Figure: Variation in the survival probability of the Υ(1S), Υ(2S), and
Υ(3S) varying Tf by ±10%.

14JHEP 05 (2021) 136 (Brambilla, Escobedo, Strickland, Vairo, PVG,
Weber)
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