Heavy-Flavour production, propagation, and hadronisation in QGP

LHCP 2024 on behalf of LHC Collaborations, Boston – 05/06/2024 Stefano Politanò University and INFN Torino

- Heavy quarks produced via hard scattering processes before quark-gluon plasma (QGP) formation
 - τ (HF) ≤ 0.1 fm/c < τ (QGP_{form., LHC}) ≈ 0.3 fm/c (PRC 89 (2014) 034906

Heavy quarks energy loss in QGP

S. Politanò (INFN) stefano.politano@to.infn.it

- Heavy quarks produced via hard scattering processes before quark-gluon plasma (QGP) formation
 - $\tau(HF) \leq 0.1 \text{ fm/}c < \tau(QGP_{form., LHC}) \approx 0.3 \text{ fm/}c (PRC 89 (2014) 034906)$
 - Elastic interactions: HQs diffuse in QGP medium (Boltzmann, Fokker-Planck or Langevin)
 - → Degree of thermalisation of heavy-quarks in the medium? Spatial diffusion coefficient (D_)?
 - Radiative interactions: energy loss of charm and beauty quarks in the medium
 - → Colour-charge and quark-mass dependence?
- Key observables: nuclear modification factor (R_{AA}) and elliptic flow (v_2)

HQ energy loss

S. Politanò (INFN) stefano.politano@to.infn.it

 $p_{\tau}(\text{GeV}/c)$

260 280 p_ [GeV]

4|16

Centrality 0-20%

√s_{NN} = 5.02 TeV

240

• $R_{\Delta\Delta}$ (charm-hadron) < $R_{\Delta\Delta}$ (beauty-hadron) at low p_{τ} •

10

- Different effects: flow, shadowing, recombination
 - Gluon radiation suppressed at angles smaller than $\theta < m_{A}/E$
- b-tagged jets less suppressed than inclusive jets in central and midcentral Pb–Pb collisions
- Not only mass effects, smaller suppression than gluon jets also due to colour factor

LHCP 2024. Boston - 05/06/2024

ALI-PUB-501679

B-jet structure in heavy-ion collisions

• Gain additional info studying jet shape: measure of charged-particle p_{T} profile w.r.t. radial distance from jet axis 10°

- ⇒ Depletion of p_T at small Δr from jet axis compared to inclusive jet shapes, already present in pp
- ⇒ Enhancement at intermediate-large Δr which increases with centrality

 Δr

0.2 0.4 0.6

1

0.5

0.4 0.6 0.8

 Δr

S. Politanò (INFN)

stefano.politano@to.infn.it

5|16

0.2

0.4 0.6 0.8

 Δr

$$\rho(\Delta r) = \frac{P(\Delta r)}{\sum_{\text{jets}} \sum_{\text{trk} \in (\Delta r < 1)} p_{\text{T}}^{\text{trk}}}$$

$$P(\Delta r) = \frac{1}{\Delta r_{\rm b} - \Delta r_{\rm a}} \frac{1}{N_{\rm jet}} \Sigma_{\rm jets} \Sigma_{\rm trk \in (\Delta r_{\rm a}, \Delta r_{\rm b})} p_{\rm T}^{\rm trk}$$

LHCP 2024, Boston - 05/06/2024

CMS: PLB 844 (2023) 137849

B-jet structure in heavy-ion collisions

- Gain additional info studying jet shape: measure of charged-particle p_T profile w.r.t. radial distance from jet axis 10
 - → Depletion of p_T at small Δr from jet axis compared to inclusive jet shapes, already present in pp
 - ⇒ Enhancement at intermediate-large Δr which increases with centrality
 - Quantitative measurement of dead-cone effect for b-jets

$$\rho(\Delta r) = \frac{P(\Delta r)}{\Sigma_{\text{jets}} \Sigma_{\text{trk} \in (\Delta r < 1)} p_{\text{T}}^{\text{trk}}}$$

$$P(\Delta r) = \frac{1}{\Delta r_{\rm b} - \Delta r_{\rm a}} \frac{1}{N_{\rm jet}} \Sigma_{\rm jets} \Sigma_{\rm trk \in (\Delta r_{\rm a}, \Delta r_{\rm b})} p_{\rm T}^{\rm trk}$$

LHCP 2024, Boston - 05/06/2024

CMS: PLB 844 (2023) 137849

S. Politanò (INFN)

stefano.politano@to.infn.it

HF elliptic flow

boundino.github.io/hinHFplot

LHCP 2024, Boston - 05/06/2024

- Positive v_2 of HF hadrons and leptons from HQ decays
 - Participation to the collective motion of the system
 - Beauty v_2 lower than charm one for $p_T < 10 \text{ GeV}/c$
 - → Partial thermalisation of open beauty in QGP?

Prompt D ALICE (30–50%): PLB 813 (2021) 136054 $c \rightarrow \mu$ ATLAS (30–40%): PLB 807 (2020) 135595 Prompt D⁰ CMS (30–50%): PLB 816 (2021) 136253 $b \rightarrow D^0$ ALICE (30–40%): EPJC 83 (2023) 1123 $b \rightarrow \mu$ ATLAS (30–40%): PLB 807 (2020) 135595 Y(1S) CMS (30–50%): PLB 819 (2021) 136385

HF elliptic flow

- S. Politanò (INFN) stefano.politano@to.infn.it
- 8|16
- Positive v_2 of HF hadrons and leptons from HQ decays
 - Participation to the collective motion of the system
 - Beauty v_2 lower than charm one for $p_T < 10 \text{ GeV/}c$
 - → Partial thermalisation of open beauty in QGP?

Prompt D ALICE (30–50%): PLB 813 (2021) 136054 $c \rightarrow \mu$ ATLAS (30–40%): PLB 807 (2020) 135595 Prompt D⁰ CMS (30–50%): PLB 816 (2021) 136253 $b \rightarrow D^0$ ALICE (30–40%): EPJC 83 (2023) 1123 $b \rightarrow \mu$ ATLAS (30–40%): PLB 807 (2020) 135595 Y(1S) CMS (30–50%): PLB 819 (2021) 136385

• Transport models in hydrodynamical expanding QGP including collisional energy loss + coalescence describe data

LHCP 2024, Boston - 05/06/2024

Constraining HQ transport

S. Politanò (INFN) stefano.politano@to.infn.it

- R_{AA} and v_2 of muons from HF hadron decays from ATLAS
 - Charm: $2\pi D_s T_c = 2.23$, Bottom: $2\pi D_s T_c = 2.79$
 - Compatible results between ATLAS and ALICE

- Constraining spatial diffusion coefficient D_s via D meson measurements
 - Simultaneous fit to $R_{AA} (\chi^2/ndf < 5)$ and $v_2 (\chi^2/ndf < 2)$
 - $-1.5 < 2\pi D_s T_c < 4.5 \rightarrow \tau_{charm} = 3-8 \text{ fm/}c$ ີ 1.5 ATLAS ATLAS <mark>♦</mark> C→μ $C \rightarrow \mu$ Pb+Pb, 5.02 TeV, 246 μb^{-1} Pb+Pb, 5.02 TeV, 246 µb⁻¹ ¢b→μ $b \rightarrow \mu$ *pp*, 5.02 TeV, 1.17 pb⁻¹ pp, 5.02 TeV, 1.17 pb⁻¹ 0-10% 40-60% 0.5 ا_{20.2} < >02 - DAB-MOD $c \rightarrow D^0 \rightarrow u$ -DAB-MOD $c \rightarrow D^0 \rightarrow u$ -DAB-MOD $b \rightarrow B^0 \rightarrow u$ **DAB-MOD** $b \rightarrow B^0 \rightarrow \mu$ **DREENA-B** $c \rightarrow D^0 \rightarrow \mu$ **DREENA-B** $c \rightarrow D^0 \rightarrow u$ **DREENA-B** $b \rightarrow B^0 \rightarrow \mu$ **DREENA-B** $b \rightarrow B^0 \rightarrow \mu$ 15 20 25 25 30 10 30 10 15 20 *ρ*_т [GeV] ATLAS: PLB 829 (2022) 137077 p_ [GeV]

Heavy quarks hadronisation in QGP

- Heavy quarks produced via hard scattering processes before quark-gluon plasma (QGP) formation
 - τ (HF) ≤ 0.1 fm/c < τ (QGP_{form., LHC}) ≈ 0.3 fm/c (PRC 89 (2014) 034906)
- Modification of hadronisation mechanism in presence of QGP?

Heavy quarks hadronisation in QGP

11|16

- Heavy quarks produced via hard scattering processes before quark-gluon plasma (QGP) formation
 - τ (HF) ≤ 0.1 fm/c < τ (QGP_{form., LHC}) ≈ 0.3 fm/c (PRC 89 (2014) 034906)
- Modification of hadronisation mechanism in presence of QGP?
 - Fragmentation $D_q \rightarrow H(z_q, Q^2)$: parton shares fraction of its momentum z_q with hadron H (dominant at high p_T)
 - Coalescence/Recombination: partons close in phase space recombine into higher p_T hadron (dominant at low p_T)
 - \Rightarrow Higher baryon-to-meson ratio at intermediate p_T
- Key observables: relative hadron production

LHCP 2024, Boston - 05/06/2024

12|16

ALICE: PLB 827 (2022) 136986, TAMU: PRL 124, 042301 (2020), LGR: EPJC 80 (2020) 7, 671, Catania: PRC 96, 044905 (2017), PHSD: PRC 93, 034906 (2016)

- Higher D_s^+/D^0 in central Pb–Pb wrt pp in 2 < p_T < 8 GeV/c by 2.3 σ
 - Hadronisation via recombination + strangeness enhancement
 - ➡ (Partial) thermal equilibrium required
- Described by transport models including strangeness enhancement and fragmentation + recombination

13|16

ALICE: PLB 827 (2022) 136986, TAMU: PRL 124, 042301 (2020), LGR: EPJC 80 (2020) 7, 671, Catania: PRC 96, 044905 (2017), PHSD: PRC 93, 034906 (2016)

- Beauty measurements compatible with transport models implementing strangeness enhancement + recombination
- ➡ More precise measurements and lower p_T reach needed LHCP 2024, Boston - 05/06/2024

- Higher D_s^+/D^0 in central Pb–Pb wrt pp in 2 < p_T < 8 GeV/c by 2.3 σ
 - Hadronisation via recombination + strangeness enhancement
 - ➡ (Partial) thermal equilibrium required
- Described by transport models including strangeness enhancement and fragmentation + recombination

HF hadronisation: baryon-to-meson ratios

S. Politanò (INFN) stefano.politano@to.infn.it

14|16

- Enhanced charm baryon-to-meson ratio wrt e^+e^-
 - Modification increasing from pp to central Pb-Pb collisions
 - ➡ Similar results between ALICE and CMS

First measurement of prompt Λ_c^+/D^0 at forward rapidities in Pb-Pb by LHCb in 65-90%

6

 $p_{_{\rm T}}$ [GeV/c]

- Similar to ALICE/CMS but lower in absolute values
 - ➡ Rapidity dependence? Specific for 65-90%?
 - → PYTHIA8+CR compatible
 - ➡ Down to 30% centrality in Run 3

HF hadronisation: baryon-to-meson ratios

S. Politanò (INFN) stefano.politano@to.infn.it

 $\Lambda_c^{+} \,/\, D^0$

0.8

0.6

0.4

0.2

1.4 ALICE

– ● pp, √s = 13 TeV

▼ pp, √s = 5.02 TeV

▲ p-Pb, $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV

10

■ Pb-Pb, √*s*_{NN} = 5.02 TeV

|y| < 0.5

stat.

syst.

extr.

 10^{3}

 $\langle dN_{ch}/d\eta \rangle_{|\eta|<0.5}$

N total

- Enhanced charm baryon-to-meson ratio wrt **e**⁺**e**[−]
 - Modification increasing from pp to central Pb–Pb collisions
 - Similar results between ALICE and CMS

 p_{T}^{-} -integrated Λ_{c}^{+}/D^{0} ratio as function of average charged-particle multiplicity

ALICF

 10^{2}

- Similar values from pp, p-Pb, to Pb-Pb
 - Different p_T redistribution between baryons and mesons?

Summary

- Many HF observables measured at LHC
 - Nuclear modification factor R_{AA}
 - ➡ HF quarks undergo energy loss in the medium → mass & color-charge dependence of in-medium energy loss
 - Azimuthal anisotropy
 - → Positive beauty v_2 observed → lower than charm, partial beauty thermalisation?
 - Baryon/meson and meson/meson ratios
 - ➡ Role of coalescence in charm-baryon formation
 - Room for improvements in beauty sector
- What's next? Run 3!

Constraining charm quark diffusion coefficient

R₄₄: JHEP 01 (2022) 174 v2: PLB 813 (2021) 136054 47 1.6 1.6 ^{>∾} 0.35 ALICE LIDO IDO w/o radiative 1.4 Coll Pb–Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 0.30 Centrality 0-10% LGR LGR w/o radiative 0.25 1.2 coll. + |y| < 0.5-□-⊕-_{⊕-⊕} 0.20 1.0 radiative 0.15 0.8 ₽₽ 0.10 0.6 0.05 0.00 0-10% Coll. \30-50% 0.05 coll. + radiative 2 3 4 5 6 7 10 $p_{_{\rm T}}$ (GeV/c) ALI-PUB-501960 $R_{\rm AA}$ ≤[™] 0.35F ALICE PHSD w/o recomb PHSD TeV no 0.30 --- POWLANG w/o recomb. POWLANG 10% 1.2 0.25F - · - DAB-MOD w/o recomb DAB-MOD reco. < 0.5 0.20 1.0 reco 0.15 0.8 reco 0.10 0.6 0.05 0.4 0.00 € Centrality 30-50% -0.05E 0. |v| < 0.8no -0.10E 20 30 20 30 4×10 3 4 5 6 7 10 678910 reco p_{τ} (GeV/c) p_{τ} (GeV/c) ALI-PUB-501964

and R_{AA} simultaneously
very challenging for transport models

Constrain c-quark D_{c} by comparing v_{2}

- Differential comparisons:
 - radiative energy loss
 - ➡ no significant effect at low pT
 - fragmentation + coalescence necessary
 - → important to describe low-intermediate p_{T}

DAB-MOD: PRC 96, 064903 (2017) LIDO: PRC 98, 064901 (2018) POWLANG: EPJC 75 (2015) 3, 121 PHSD: PRC 93, 034906 (2016) LGR: EPJC 80 (2020) 7, 671

LHCP 2024, Boston - 05/06/2024

Constraining beauty quark diffusion coefficient

- R_{AA}(non-prompt D⁰) / R_{AA} (prompt D⁰) ratio comparison with models
 - both collisional and radiative energy loss mechanisms important to describe data
 - low-p_T (< 5 GeV/c): pattern hints difference in shadowing/flow/coalescence
 - high- p_T (> 5 GeV/c): 3.9σ above unity → beauty less suppressed than charm
- Testing LGR ingredients effect
 - "valley" structure pT < 5 GeV/c
 - ➡ charm coalescence (iv)
 - enhancement for $p_{T} > 5 \text{ GeV/}c$
 - mass dependent quark in-medium energy loss effect (i)

LHCP 2024, Boston - 05/06/2024

Transport models

• Boltzmann equation for HQ phase-space distribution (f_1)

$$\left(\frac{\partial}{\partial t} + \frac{\vec{p}}{E} \cdot \vec{\nabla}_r - (\vec{\nabla}_r V) \cdot \vec{\nabla}_p\right) f_1(\vec{r}, \vec{p}, t) = I_{\text{coll}}(f_1)$$

 – collision term: semiclassical simulation of medium + HQ quasiparticles

- consider
$$p^2 \sim m_Q T >> q^2 \sim T^2$$
 (e.g. HF)

• Fokker-Planck equation

$$\frac{\partial f_Q(p,t)}{\partial t} = \frac{\partial}{\partial p_i} \left[A_i(p) + \frac{\partial}{\partial p_j} B_{ij}(p) \right] f_Q(p,t) \quad - \text{ impose the } p \to 0 \text{ limit}$$

$$\frac{\partial f_Q}{\partial t} = \gamma \frac{\partial}{\partial p_i} (p_i f_Q) + D \frac{\partial}{\partial p_i} \frac{\partial}{\partial p_i} f_Q$$

arXiv:0803.0901v2

- relaxation time: $t_0 = 1/\gamma$
- spatial diffusion coefficient: $D_s = T/[\gamma(p=0)m_Q] \rightarrow \gamma = Tm_Q/D_s$

Models	Bulk	nPDFs	HQ interactions	Hadronization	Hadron phase	D _s	Ref.
CATANIA	Boltzmann quasi-particles		Langevin	Recomb. (ICM) + Frag.	No	3.5-4.5	Phys. Rev. C 96 (2017) 044905 (R _{AA}) Phys. Lett. B 805 (2020) 135460 (v ₂)
DAB-MOD (M&T)	Hydro viscous (v-USPhydro)		Langevin	Recomb. (ICM) + Frag.	No	2.5	Phys. Rev. C 102, 024906 (2020)
LBT	Hydro viscous (VISHNew)	Yes	Boltzmann coll+rad	Recomb. (ICM) + Frag.	No	2	Phys. Rev. C 94 (2016) 014909 Phys. Lett. B 777 (2018) 255
LIDO	Hydro viscous		Boltzmann Langevin coll+rad	Recomb. (ICM) + Frag.	Yes	2-4	Phys. Rev. C 100, 064911
LGR	Hydro viscous (3+1 HLLE)	Yes	Langevin coll+rad	Recomb. + Frag.		2-4	Eur. Phys. J. C, 80 (2020) 671
MC@sHQ+ EPOS2	Hydro ideal (EPOS)	Yes	Boltzmann coll+rad	Recomb. (ICM) + Frag.	No	1.5	Phys. Rev. C 89 (2014) 014905
PHSD	off-shell parton transport	Yes	Collisional	Recomb. (ICM) + Frag.	Yes	4	Phys. Rev. C 93, 034906 (2016) (LHC) Phys. Rev. C 92, 014910 (2015)
POWLANG	Hydro viscous (ECHO-QGP)	Yes	Langevin coll	In-medium strings	No	7	Eur. Phys. J. C 75 (2015) 121 (R _{AA}) JHEP 02 (2018) 043 (v ₂)
TAMU	Hydro ideal	Yes	Langevin T-matrix (coll)	Recomb. (RRM) + Frag.	Yes	4	Phys. Rev. Lett. 124, 042301 (2020)