Probing Medium Properties in Ultra-Central Collisions

Somadutta Bhatta

Stony Brook University, New York, USA

On behalf of: ALICE, ATLAS & CMS

12th Edition of the Large Hadron Collider Physics Conference

Relativistic Heavy-Ion Collisions

Currently, characterization of initial state is the largest source of uncertainties in extracted QGP properties.

"Geometry" of Initial State Overlap Region

> Most-Central collisions have $b \approx 0$, max. overlap Area \Rightarrow Ideal to probe factors controlling initial state

• Note: Currently no clear definition of UCC, 1% centrality is commonly used.

Effect of Nuclear Deformation on Overlap Geometry

• Usually, the geometry of colliding nuclei approximated using a Woods-Saxon form:

Effect of Nuclear Deformation on Overlap Geometry

Usually, the geometry of colliding nuclei approximated using a Woods-Saxon form:

> Nuclear deformation expected to enhance eccentricity and size fluctuations of overlap region

Constraining β using 2-particle correlation measurements

Nuclear deformation inputs (eg: β_{2,Xe} ≥ 0.18) are essential to describe experimentally measured v_{2,Xe}.
In turn, nuclear deformation should be input in Bayesian analyses to constrain initial state.

Constraining Triaxiality (γ) using Heavy-Ion Collisions

 \succ ρ_n provides important constraint on origin of final state as a response to initial state fluctuations.

Constraining γ Using ρ_n Measurements

 $\langle v_2^2 \delta p_T \rangle \sim a - b \langle \beta^3 \cos(3\gamma) \rangle > Pb$ corresponds to $\beta \sim 0.06$ and $\gamma \sim 27^{\circ}$ (near spherical); Xe corresponds to $\beta \sim 0.21$ and $\gamma \sim 27^{\circ}$ (highly deformed triaxial nucleus).

Ultra-Central heavy ion collisions provide ideal conditions to constrain Nuclear structure, which controls geometry of initial state

Geometric and Non-Geometric Fluctuations

• On an event-by event basis, there are two sources of fluctuations influencing final state measured $\langle [p_T] \rangle$

Distinguishing Geometric and Intrinsic fluctuations is important to constrain both initial state and medium evolution.

- In UCC, within approximately fixed geometry (*b*), choosing larger *N_{ch}* chooses events with larger entropy density arising from intrinsic component.
- Larger entropy density within a fixed geometry leads to larger radial push or $\langle [p_T] \rangle$.

• The slope of this rise of $\langle \langle p_T \rangle \rangle$ in UCC can be related to speed of sound of QGP:

$$c_s^2 = \frac{dP}{d\epsilon} = \frac{d(lnT)}{d(lns)} = \frac{d(ln\langle p_T \rangle)}{d(lnN_{ch})}$$

- Both ATLAS and CMS have observed the steep increase in slope of $\langle [p_T] \rangle$ in UCC. \Rightarrow Evidence of overlap area reaching its maximum and Hydro evolution of system.
- CMS extracted the slope of this rise: claimed the speed of sound of QGP, $c_s^2 \approx 0.241$.

• The value of c_s^2 extracted by CMS is consistent with Lattice QCD calculations at an effective temperature of about 220 MeV with small systematic error.

• UCC measurement of $\langle [p_T] \rangle$ provides direct information on c_s^2 of QGP.

Dependence of UCC Slope of $\langle [p_T] \rangle$ on Evolution Dynamics

 $c_s^2(T_{\text{eff}}) \propto \frac{d \ln(\langle [p_T] \rangle)}{d \ln(N_{\text{ch}}^{\text{rec}})} \approx \frac{\Delta p_T / \langle [p_T] \rangle}{\Delta N_{\text{ch}}^{\text{rec}} / \langle N_{\text{ch}}^{\text{rec}} \rangle}$

- > ATLAS: slope of this rise depends on the p_T -range of the particles, consistent with Hydro models.
- Models without hydro evolution or mechanisms to relate initial entropy densities to number of particles fail to describe slope.

Using $[p_T]$ Cumulants to Constrain Fluctuations in IS

Using $[p_T]$ Cumulants to Constrain Fluctuations in IS

Constraining Geometric and Non-Geometric fluctuations

- In Ultra-Central Collisions: 1. The variance of Geometric fluctuations diminishes $\Rightarrow b$ almost gets fixed. 2. The skewness goes up due to truncation of distribution of event-wise $\langle p_T \rangle$.
- Experimental measurement of the cumulants of P([p_T]) can help in: Isolating magnitude of "Geometric-fluctuations" from "Intrinsic fluctuations" in HIC.

Using $[p_T]$ Cumulants to Constrain Medium Evolution

- ALICE: variance and skewness of $P([p_T])$ show deviations from power-law in UCC.
- > Positive skewness excess from its baseline : indicates hydrodynamic evolution of QGP

Using $[p_T]$ Cumulants to Constrain Fluctuations

> Observed UCC features arise from diminishing component from *b* fluctuations (Geometric component).

Using $[p_T]$ Cumulants to Constrain Fluctuations

> Observed UCC features arise from diminishing component from *b* fluctuations (Geometric component).

Using $[p_T]$ Cumulants to Constrain Fluctuations

ATLAS measurement shows:

- Observed UCC features arise from diminishing component from b fluctuations (Geometric component).
- First experimental constraint on magnitude of Intrinsic fluctuations in heavy-ion collisions.

Conclusion

- Ultra-Central heavy-ion collisions provide ideal conditions to constrain geometry and sources of fluctuations in the Initial state & from medium evolution.
- > Recent measurements from LHC on flow and $[p_T]$ correlations in UCC has shown:
- 1. Nuclear deformation parameters β , γ can be reliably extracted from Ultra-Central HIC. The extracted deformation are valuable inputs for Bayesian analysis to constrain Initial state.
- 2. Measured slope of rise of $\langle [p_T] \rangle$ provides evidence of hydrodynamic evolution of system. Provided precise and direct constraint on speed of sound of QGP.
- 3. In UCC, the $[p_T]$ cumulants show clear signs of diminishing geometric fluctuations. Provide experimental constraint on Geometric and Intrinsic fluctuations from Initial state and medium evolution of HIC.

Backup

Effect of β on Overlap Geometry

Nuclear deformation enhances fluctuations in size and eccentricity of overlap region

The effect of deformation on eccentricity and size fluctuations is maximum in ultra central collisions.

Effect of γ on Shape-Size Correlations of Overlap Geometry

> Clear sensitivity to triaxiality for BOTH Initial state $\rho(\varepsilon_2^2, \frac{\delta d_\perp}{d_\perp})$ & final state $\rho(v_2^2, \frac{\delta [p_T]}{[p_T]})$ in models.

- In UCC, within approximately fixed b, choosing larger N_{ch} chooses events with larger entropy density.
- Larger entropy density within a fixed geometry leads to larger radial push or $\langle [p_T] \rangle$.

• The slope of this rise of $\langle \langle p_T \rangle \rangle$ in UCC can be related to speed of sound following:

$$c_s^2 = \frac{dP}{d\epsilon} = \frac{d(lnT)}{d(lns)} = \frac{d(ln\langle p_T \rangle)}{d(lnN_{ch})}$$