

Azimuthal flow and correlations in HI

Shengquan Tuo (Vanderbilt University) for the ALICE, ATLAS, CMS and LHCb collaborations

Heavy ion collision overview

Azimuthal flow and correlations at LHC – recent results

Observables

Physics

Initial conditions and

- Azimuthal flow: Fourier coefficients v_n
 - $-v_n$ extended to forward region in pseudorapidity (ALICE and LHCb)
 - Ridge yield in low multiplicity (ALICE)
 - $-v_2$ at high p_T, with/without jets, or inside jet cone (ATLAS and CMS)
 - Flow decorrelations (ALICE and ATLAS)
- Bose-Einstein correlations / Femtoscopic correlations
 - Correlation radius in pPb (LHCb)
 - Correlation radius in pp with event shape selection (ALICE)
- Mean transverse momentum
 - <p_T> fluctuations (ALICE and ATLAS)
 - $< p_T >$ in ultra-central collisions (CMS)

Collision geometry

- Shape
- Size
- Fluctuations

- Quark-gluon plasma
- Transport properties
 - Shear and bulk viscosities
- Speed of sound

v_n extended to forward region (ALICE)

v_n extended to forward region (ALICE and LHCb)

Ridge yield in low multiplicity (ALICE)

Identified particle v₂ in low multiplicity (ALICE)

• Baryon-meson grouping and splitting of v_2 : described by Hydro+Coal+Frag, not transport

Identified particle v₂ in low multiplicity (ALICE)

Ultra long-range v₂ in low multiplicity (ALICE)

v₂ in events WithJets/NoJets (ATLAS)

- v₂ is not affected by jets
- Jet constituents have zero v₂

v_2 in events WithJets/NoJets, at high p_T (ATLAS and CMS)

v₂ inside jet cone (CMS)

Flow decorrelations (ALICE)

 Models can only reproduce trends for some of the decorrelation results

Flow decorrelations (ALICE and ATLAS)

Bose-Einstein correlations (ALICE)

- Spherical events have larger emitting source
- R_{inv} decreases as m_T increases

Bose-Einstein correlations (ALICE and LHCb)

- Spherical events have larger emitting source
- R_{inv} decreases as m_T increases
- Scaling of R with cube root of N_{VELO}
 - Agree with hydrodynamic predictions 16

<p_> fluctuations (ALICE)

<p_> fluctuations (ALICE and ATLAS)

$< p_T >$ in ultra-central collisions and speed of sound (CMS)

Extracting speed of sound is more complicated (ALICE)

Extracting speed of sound is more complicated (ALICE)

Λ polarization in pPb (CMS)

Summary

- Rich results from flow and correlations at LHC
 - Flow extended to forward region, including in pPb
 - Ridge yield and PID v₂ extracted at low multiplicity in pp and pPb
 - Relation between flow and jets studied in detail in small systems
 - New flow decorrelations for understanding longitudinal dynamics
 - Bose-Einstein correlations with event shape engineering
 - Power hiding behind $< p_T > is \frac{being}{ealed}$: speed of sound in QGP
 - $-\Lambda$ polarization observed in pPb
- Work on Run3 data is ongoing

Full list of results at LHC:

Shenqquan Tuo

CMS