Indirect constraints on top quark operators from a global SMEFT analysis

Antonio Rodríguez Sánchez

LHCP 2024, Boston 07/06/2024

F. Garosi, D. Marzocca, A. Stanzione, ARS, JHEP 12 (2023) 129, 2310.00047

Starting point

- BSM exists. Hopefully found in the next scale jump...
- Plausible scenario: new physics mainly couples to the top quark
- Assume that mostly top quark operators are induced at the ${
 m TeV}$

	Semi-leptonic		Four quarks
$\mathcal{O}_{lq}^{(1),\alpha\beta}$	$(\bar{l}^a\gamma_\mu l^\beta)(\bar{q}^3\gamma^\mu q^3)$	$\mathcal{O}_{qq}^{(1)}$	$(\bar{q}^{3}\gamma^{\mu}q^{3})(\bar{q}^{3}\gamma_{\mu}q^{3})$
$\mathcal{O}_{lq}^{(3),\alpha\beta}$	$(\bar{l}^a\gamma_\mu\tau^a l^\beta)(\bar{q}^3\gamma^\mu\tau^a q^3)$	$\mathcal{O}_{qq}^{(3)}$	$(\bar{q}^3\gamma^\mu\tau^aq^3)(\bar{q}^3\gamma_\mu\tau^aq^3)$
$\mathcal{O}_{lu}^{\alpha\beta}$	$(\bar{l}^{\alpha}\gamma^{\mu}l^{\beta})(\bar{u}^{3}\gamma_{\mu}u^{3})$	О _{ии}	$(\bar{u}^3 \gamma^{\mu} u^3)(\bar{u}^3 \gamma_{\mu} u^3)$
$\mathcal{O}_{qe}^{\alpha\beta}$	$(\bar{q}^3\gamma^\mu q^3)(\bar{e}^\alpha\gamma_\mu e^\beta)$	$\mathcal{O}_{qu}^{(1)}$	$(\bar{q}^3\gamma^\mu q^3)(\bar{u}^3\gamma_\mu u^3)$
$\mathcal{O}_{eu}^{\alpha\beta}$	$(\bar{e}^\alpha\gamma^\mu e^\beta)(\bar{u}^3\gamma_\mu u^3)$	$O_{qu}^{(8)}$	$(\bar{q}^3\gamma^\muT^Aq^3)(\bar{u}^3\gamma_\muT^Au^3)$
$\mathcal{O}_{lequ}^{(1), \alpha\beta}$	$(\bar{l}^{\alpha}e^{\beta})\epsilon(\bar{q}^{3}u^{3})$		Higgs-Top
$\mathcal{O}_{lequ}^{(3),\alpha\beta}$	$(\bar{l}^{\alpha}\sigma_{\mu\nu}e^{\beta})\epsilon(\bar{q}^{3}\sigma^{\mu\nu}u^{3})$	$\mathcal{O}_{Hq}^{(1)}$	$(H^{\dagger}i\overset{\leftrightarrow}{\mathcal{D}}_{\mu}H)(\bar{q}^{3}\gamma^{\mu}q^{3})$
	Dipoles	$\mathcal{O}_{Hq}^{(3)}$	$(H^{\dagger}i \overset{\leftrightarrow}{\mathcal{D}_{\mu}^{a}} H)(\bar{q}^{3}\gamma^{\mu}\tau^{a}q^{3})$
0 _{uG}	$(\bar{q}^3 \sigma^{\mu\nu} T^A u^3) \tilde{H} G^A_{\mu\nu}$	0 _{Hu}	$(H^{\dagger} i \overset{\leftrightarrow}{\mathcal{D}}_{\mu} H)(\bar{u}^{3} \gamma^{\mu} u^{3})$
\mathcal{O}_{uW}	$(\bar{q}^3\sigma^{\mu\nu}u^3)\tau^a\tilde{H}W^a_{\mu\nu}$	0 _{uH}	$(H^{\dagger}H)(\bar{q}^3u^3\tilde{H})$
O _{uB}	$(\bar{q}^3 \sigma^{\mu\nu} u^3) \tilde{H} B_{\mu\nu}$		

• Otherwise (yet setting $q^i = (u_L^i, V_{ij}d_L^j)$) model independent

Overview of low-energy sectors

- Quark flavor rotation induce some low-energy processes even at tree level (suppressed by CKM angles)
- Radiative corrections induced by tops are leading in some cases. Use
 DsixTools Eur.Phys.J.C 81 (2021) 2

B and *K* physics. Examples

•
$$R^{
u}_{K^{(*)}}$$
, $K o \pi
u \overline{
u}$

• $B \to K^{(*)} \ell_{\alpha} \ell_{\beta}, B_{s,d} \to \ell_{\alpha} \ell_{\beta}, K \to \pi \ell_{\alpha} \ell_{\beta}, K \to \ell_{\alpha} \ell_{\beta}, R_{K^{(*)}}$

$\Delta F = 2$. Examples

Observable	Experimental value	SM prediction
ϵ_K	$(2.228 \pm 0.011) \times 10^{-3}$	$(2.14 \pm 0.12) \times 10^{-3}$
ΔM_s	$(17.765\pm0.006){ m ps}^{-1}$	$(17.35\pm0.94){ m ps}^{-1}$
ΔM_d	$(0.5065\pm 0.0019){ m ps}^{-1}$	$(0.502\pm0.031){ m ps}^{-1}$

Use JHEP 12 (2020) 187

Charged Lepton Flavor-Violating decay modes

- $\mu
 ightarrow e$. A few modes, extremely stringent
- $\tau \rightarrow \ell$. Many modes. Not so precise
- Top-philic + LFV? $\rightarrow \overline{\ell}\ell'\overline{t}t$

EW/Higgs

Include EWPOs, such as Z pole observable and $H
ightarrow \gamma\gamma$

Global likelihood from Falkowski et al. JHEP 04 (2020) 066

Leptons

• Lepton Flavor Universality

• Magnetic moments

Observable	Experimental value HFLAV	
Observable	$\ell=e$	$\ell=\mu$
$g_{ au}/g_{\ell}-1$	$(2.7 \pm 1.4) \times 10^{-3}$	$(0.9\pm 1.4)\times 10^{-3}$
Δa_ℓ	(2.8 ± 7.4) $ imes$ 10 ⁻¹³	(20.0 \pm 8.4) $\times 10^{-10}$

Cabibbo angle

- $\pi \to \ell \nu$, $K \to \ell \nu$, $K \to \pi \ell \nu$, $\tau \to \nu H$, $\mathcal{N} \to \mathcal{N}' e \nu$, $n \to p e \nu$
- Related by unitarity $|V_{ud}|^2+|V_{us}|^2=1$ $_{v_{ub}}$ has a negligible effect.

• Most interesting effect: modify apparent V_{ud}^{β} (muon vertex)

One parameter fits

- Useful to compare experimental reach, scale tested
- If Wilson is induced in a model, where to look at first?

Wilson	Global fit $[TeV^{-2}]$	Dominant
$C_{qq}^{(+)}$	$(-1.9\pm2.3)\times10^{-3}$	ΔM_s
$C_{qq}^{(-)}$	$(-2.0 \pm 1.0) imes 10^{-1}$	$B_s \to \mu \mu$
$C_{qu}^{(1)}$	$(1.3 \pm 1.0) imes 10^{-1}$	ΔM_s
$C_{qu}^{(8)}$	$(-1.7\pm4.4) imes10^{-1}$	ΔM_s
Cuu	$(-3.0\pm1.7) imes10^{-1}$	$\delta g_{L,11}^{Ze}$
$C_{Hq}^{(+)}$	$(18.7\pm8.8) imes10^{-3}$	$B_s \to \mu \mu$
$C_{Hq}^{(-)}$	$(5.8 \pm 4.5) imes 10^{-2}$	$\delta g_{L,11}^{Ze}$
C _{Hu}	$(-4.3\pm2.3)\times10^{-2}$	$\delta g_{L,11}^{Ze}$
C _{uB}	$(-0.6\pm2.0)\times10^{-2}$	$c_{\gamma\gamma}$
C _{uG}	$(-0.1\pm 2.0)\times 10^{-2}$	Cgg
CuH	$(-0.3\pm 5.2)\times 10^{-1}$	С _{иН,33}
C _{uW}	$(-0.1\pm3.1) imes10^{-2}$	$c_{\gamma\gamma}$

One parameter fits: comparison with direct bounds

Indirect bounds typically stronger or at least complementary

One parameter fits

Wilson	Global fit [TeV ⁻²]	Dominant
$C_{lq}^{(+),11}$	$(2.4 \pm 3.5) imes 10^{-3}$	R _K
$C_{lq}^{(+),22}$	$(-4.0\pm3.4) imes10^{-3}$	R _K
$C_{lq}^{(+),33}$	$(7.2 \pm 4.4) imes 10^{-1}$	$g_{ au}/g_i$
$C_{lq}^{(-),11}$	$(10.9 \pm 7.6) \times 10^{-2}$	$R^{\nu}_{K^{(*)}}$
$C_{lq}^{(-),22}$	$(-6.0\pm7.0)\times10^{-2}$	$R^{\nu}_{\kappa^{(*)}}$
$C_{lq}^{(-),33}$	$(-1.8\pm1.0)\times10^{-1}$	$R^{\nu}_{\kappa^{(*)}}$
C_{lu}^{11}	$(-1.7\pm7.0) imes10^{-2}$	$\delta g_{L,11}^{Ze}$
C ²² <i>lu</i>	$(-4.3\pm 1.8)\times 10^{-1}$	$\delta g_{L,22}^{Ze}, R_K$
C ³³ _{lu}	$(0.5 \pm 2.4) imes 10^{-1}$	$\Delta g^{Ze}_{L,33}$
C_{qe}^{11}	$(-0.7\pm 3.9)\times 10^{-2}$	R_{K^*}
C_{qe}^{22}	$(12.1 \pm 9.2) \times 10^{-3}$	$B_s \to \mu \mu$
C_{qe}^{33}	$(2.2 \pm 2.4) imes 10^{-1}$	$\delta g^{Ze}_{R,33}$

Wilson	Global fit [TeV ⁻²]	Dominant
C_{eu}^{11}	$(5.0\pm 8.1) imes 10^{-2}$	$\Delta g_R^{Ze}{}_{11}$
C _{eu} ²²	$(4.8 \pm 2.1) imes 10^{-1}$	$\Delta g_R^{Ze}{}_{22}$
C_{eu}^{33}	$(-2.3\pm 2.5)\times 10^{-1}$	$\Delta g_R^{Ze}{}_{33}$
$C_{lequ}^{(1),11}$	$(0.4 \pm 1.0) imes 10^{-2}$	(g - 2) _e
$C_{lequ}^{(1),22}$	$(1.8 \pm 1.6) imes 10^{-2}$	C _{eH22}
$C_{lequ}^{(1),33}$	$(8.0\pm 9.1) imes 10^{-2}$	С _{еН33}
$C_{lequ}^{(3),11}$	$(-0.6\pm 1.5)\times 10^{-5}$	$(g - 2)_{e}$
$C_{lequ}^{(3),22}$	$(-19.3\pm8.1)\times10^{-5}$	$(g - 2)_{\mu}$
$C_{lequ}^{(3),33}$	$(-7.0\pm7.8) imes10^{-1}$	C _{eH33}

Two parameter fits

Some insight on the interplay between coefficients/sectors

Applications to UV models

•
$$S_1 \sim (\bar{\mathbf{3}}, \mathbf{1})_{+1/3}$$

 $\mathcal{L} \supset \lambda_{t\tau} \, \bar{q}_3^c i \sigma_2 l_3 \, S_1 + \text{h.c.} ,$

Top-philic LQ for the Cabibbo tension

 Killed by B/K physics (unless top-philic condition is imposed in down-quark basis)

Conclusions

• Phenomenological study of top-philic scenarios

• Strong interplay between different sectors

• Low-energy physics important to understand how heavy new physics might be

• Let us hope we find new physics both in low-energy and high-energy searches!

Thanks!

BACK-UP SLIDES

B and K physics

	Tree level matching	RG and 1-loop matching
$R^{ u}_{\mathcal{K}^{(*)}}$	$C^{(1,3)}$ $C^{(1,3),\alpha\beta}$	$C_{Hu}, \ C_{qq}^{(1,3)}, \ C_{lu}^{lphaeta}, \ C_{qe}^{lphaeta}$
$K o \pi u ar{ u}$	C_{Hq} , C_{Iq}	$C_{qu}^{(1,8)}, \ C_{uu}, \ C_{uW}$
$B o K^{(*)} \ell_{lpha} \ell_{eta}$		
$B_{s,d} o \ell_lpha \ell_eta$	$C_{Ha}^{(1,3)}, C_{Ia}^{(1,3),\alpha\beta}, C_{ae}^{\alpha\beta}$	$C_{qq}^{(1,3)}, C_{lu}^{\alpha\beta}, C_{eu}^{\alpha\beta}$
$K o \pi \ell_{\alpha} \ell_{\beta}$		
$K o \ell_{lpha} \ell_{eta}$		
$R_{\mathcal{K}^{(*)}}$	$C_{lq}^{(1,3),\ell\ell},\ C_{qe}^{\ell\ell}$	$C_{lu}^{\ell\ell}$
$B ightarrow X_s \gamma$		$C_{Hq}^{(1,3)}, C_{uB}, C_{uW}, C_{uG}$

B and K physics

Observable	Experimental value
$B \rightarrow X_S \gamma$	$(3.49 \pm 0.19) \times 10^{-4}$ PDG
$\frac{R_K^{\nu}}{K}$	$2.93 \pm 0.90 \frac{\text{Belle-II}}{\text{Belle-II}}$
$R_{K^*}^{\nu}$	< 3.21 Belle-II
R _K [1.1, 6]	0.949 \pm 0.047 LHCb
R _{K*} [1.1, 6]	$1.027 \pm 0.077 \text{ LHCb}$
$\mathcal{B}(B \to Ke\mu)$	$< 4.5 \times 10^{-8}$ Belle
$\mathcal{B}(B \to Ke\tau)$	$< 3.6 \times 10^{-5} \text{ BaBar}$
$\mathcal{B}(B \rightarrow K \mu \tau)$	$< 4.5 \times 10^{-5}$ LHCb

Observable	Experimental value
$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$	$(1.14^{+0.4}_{-0.33}) \times 10^{-10}$ NA62
$\mathcal{B}(K_L \rightarrow \pi^0 \nu \bar{\nu})$	$< 3.6 \times 10^{-9} \text{ KOTO}$
	40
$\mathcal{B}(K_S \to \mu^+ \mu^-)$	$< 2.5 \times 10^{-10}$ LHCb
$\mathcal{B}(K_L \rightarrow \mu^+ \mu^-)_{SD}$	$< 2.5 \times 10^{-9}$ lsidori:2003
$\mathcal{B}(\mathcal{K}_L \rightarrow \mu^{\pm} e^{\mp})$	$< 5.6 \times 10^{-12} \text{ BNL}$
<u> </u>	10
$\mathcal{B}(K_L \to \pi^0 \mu^+ \mu^-)$	$< 4.5 \times 10^{-10} \text{ KTeV}$
$B(K_L \rightarrow \pi^0 e^+ e^-)$	$< 3.3 \times 10^{-10} \text{ KTeV}$
$\mathcal{B}(K_L \rightarrow \pi^0 e^+ \mu^-)$	$< 9.1 \times 10^{-11} \text{ KTeV}$
$\mathcal{B}(K^+ \rightarrow \pi^+ e^+ \mu^-)$	$< 7.9 \times 10^{-11} \text{ NA62}$

Observable	Experimental value
$\mathcal{B}(B_S \rightarrow ee)$	$< 11.2 \times 10^{-9}$ LHCb
$\mathcal{B}(B_S \rightarrow \mu \mu)$	$(3.01 \pm 0.35) \times 10^{-9}$ LHCb
$\mathcal{B}(B_S \rightarrow \tau \tau)$	$< 6.8 \times 10^{-3}$ LHCb
$\mathcal{B}(B_S \rightarrow e\mu)$	$< 6.3 \times 10^{-9}$ LHCb
$\mathcal{B}(B_S \rightarrow \mu \tau)$	$< 4.2 \times 10^{-5}$ LHCb
$\mathcal{B}(B_d \rightarrow ee)$	$< 3.0 \times 10^{-9}$ LHCb
$\mathcal{B}(B_d \rightarrow \mu \mu)$	$< 2.6 \times 10^{-10}$ LHCb
$\mathcal{B}(B_d \rightarrow \tau \tau)$	$< 2.1 \times 10^{-3}$ LHCb
$\mathcal{B}(B_d \rightarrow e\mu)$	< 1.3 × 10 ⁻⁹ LHCb
$\mathcal{B}(B_d \rightarrow \mu \tau)$	$< 1.4 \times 10^{-5}$ LHCb

$\mathsf{EW}/\mathsf{Higgs}$

$$\begin{split} \delta g_{L}^{Z\ell} & \longleftarrow \quad C_{uB}, \ C_{uW}, C_{Hu}, \ C_{Hq}^{(1,3)}, \ C_{lq}^{(1,3),\ell\ell}, \ C_{lu}^{\ell\ell}, \ \dots \\ \delta g_{L}^{W\ell} & \longleftarrow \quad C_{uB}, \ C_{uW}, \ C_{Hu}, \ C_{Hq}^{(1,3)}, \ C_{lq}^{(3),\ell\ell}, \ \dots \\ \delta g_{R}^{Z\ell} & \longleftarrow \quad C_{uB}, \ C_{uW}, \ C_{Hu}, \ C_{Hq}^{(1,3)}, \ C_{eu}^{\ell\ell}, \ C_{qe}^{\ell\ell}, \ \dots \\ \delta g_{L}^{Zb} & \longleftarrow \quad C_{uB}^{(1,3)}, \ C_{Hu}, \ C_{qq}^{(1,3)}, \ \dots \\ \delta g_{L}^{Zb} & \longleftarrow \quad C_{Hq}^{(1,3)}, \ C_{Hu}, \ C_{qq}^{(1,3)}, \ \dots \\ \delta g_{R}^{Zb} & \longleftarrow \quad C_{Hq}^{(1,3)}, \ C_{Hu}, \ C_{qq}^{(1,3)}, \ \dots \\ \delta g_{R}^{Zb} & \longleftarrow \quad C_{Hq}^{(1)}, \ C_{Hu}, \ C_{qq}^{(1,3)}, \ C_{uB}, \ C_{uW}, \ \dots \\ c_{\gamma\gamma} & \longleftarrow \quad C_{uB}, \ C_{uW}, \ C_{uG} \\ c_{gg} & \longleftarrow \quad C_{uG} \\ C_{eH}]_{\alpha\alpha} & \longleftarrow \quad C_{lequ}^{(1),\alpha\alpha} \\ [C_{uH}]_{33} & \longleftarrow \quad C_{uH}, \ C_{uG}, \ C_{Hq}^{(1,3)}, \ C_{qu}^{(1,8)}, \ \dots \end{split}$$

ſ

Charged Lepton Flavor-Violating decay modes

• Use JHEP 05 (2017) 117 and JHEP 03 (2021) 256 and use DsixTools to run to 1 TeV

Observable	Experimental limit
${\cal B}(\mu o e \gamma)$	$5.0 imes10^{-13}$ MEG
$\mathcal{B}(\mu ightarrow 3e)$	1.2×10^{-12} SINDRUM
$\mathcal{B}(\mu \operatorname{Au} ightarrow e \operatorname{Au})$	$8.3 imes 10^{-13}$ SINDRUM
${\cal B}(au o e \gamma)$	$3.9 imes 10^{-8}$ BaBar
$\mathcal{B}(au o 3e)$	$3.2 imes 10^{-8}$ Belle
${\cal B}(au o {f e}ar{\mu}\mu)$	$3.2 imes 10^{-8}$ Belle
${\cal B}(au o e \pi^0)$	$9.5 imes 10^{-8}$ Belle
${\cal B}(au o e\eta)$	$1.1 imes 10^{-7}$ Belle
${\cal B}(au o { m e} \eta')$	$1.9 imes 10^{-7}$ Belle

Observable	Experimental limit
${\cal B}(au o e \pi^+ \pi^-)$	$2.7 imes 10^{-8}$ Belle
${\cal B}(au o e {\cal K}^+ {\cal K}^-)$	$4.1 imes 10^{-8}$ Belle
${\cal B}(au o \mu \gamma)$	$5.0 imes 10^{-8}$ Belle
${\cal B}(au o 3\mu)$	$2.5 imes 10^{-8}$ Belle
$\mathcal{B}(au o \mu ar{ extsf{e}} extsf{e})$	$2.1 imes 10^{-8}$ Belle
${\cal B}(au o \mu \pi^0)$	$1.3 imes 10^{-7}$ Belle
$\mathcal{B}(au o \mu \eta)$	$7.7 imes 10^{-8}$ Belle
${\cal B}(au o \mu \eta')$	$1.5 imes 10^{-7}$ Belle
${\cal B}(au o \mu \pi^+ \pi^-)$	$2.5 imes 10^{-8}$ Belle
$\mathcal{B}(au o \mu K^+ K^-)$	$5.2 imes 10^{-8}$ Belle

Leptons

Tests of LFU comparing with $\mu \to e$

$$rac{g_{ au}}{g_e} - 1 = 0.0038 \left(C_{lq}^{(3),33} - C_{lq}^{(3),11}
ight)
onumber \ rac{g_{ au}}{g_{\mu}} - 1 = 0.0038 \left(C_{lq}^{(3),33} - C_{lq}^{(3),22}
ight)$$

Observable	Experimental value HFLAV					
	$\ell=e$	$\ell=\mu$				
$g_ au/g_\ell-1$	$(2.7 \pm 1.4) \times 10^{-3}$	$(0.9 \pm 1.4) \times 10^{-3}$				

Leptons: magnetic moments

$$\label{eq:alpha} \begin{split} &\alpha^{-1}(a_e) = 137.035999166(15) & \mbox{PhysRevLett.} 130.071801 \\ &\alpha^{-1}(\mbox{Cs}) = 137.035999046(27) & \mbox{Science 360, 191} \\ &\alpha^{-1}(\mbox{Rb}) = 137.035999206(11) & \mbox{Nature 588} \end{split}$$

 $\begin{array}{l} \mbox{Rydberg frequency codata} \\ \frac{\alpha^2 m_e c^2}{2h} = 3.2898419602508(64) \, \mbox{Hz} \\ \mbox{h/m_e?} \\ \mbox{(}m_e/m_C) \, (m_C/m_{\rm Cs}) \frac{m_{\rm Cs}}{\rm h} \end{array}$

Use JHEP 07 (2021) 107

Leptons: magnetic moments

Similar for the muon

$$\Delta a_e = -4.8 \times 10^{-8} C_{lequ}^{(3),11} + 7.1 \times 10^{-11} C_{lequ}^{(1),11},$$

 $\Delta a_\mu = -1.0 \times 10^{-5} C_{lequ}^{(3),22} + 1.5 \times 10^{-8} C_{lequ}^{(1),22}.$

Considering SM tensions...

Observable	Experimental value					
	$\ell = e$	$\ell=\mu$				
Δa_ℓ	$(2.8 \pm 7.4) \times 10^{-13}$	$(20.0 \pm 8.4) \times 10^{-10}$				

Cabibbo angle

- $\pi \to \ell \nu \ K \to \ell \nu \ \tau \to K \nu, \pi \nu$
 - No phase space. Goldstone parity: $(\epsilon_{L-R}, \epsilon_P)$
 - $f_{\pi,K}$ from the lattice. Ratios better known (dependence on lattice scale)
 - Other uncertainties: radiative corrections, experimental
- $K \to \pi \ell \nu$
 - Probing ϵ_{L+R}^{s} , ϵ_{T}^{s} , ϵ_{S}^{s}
 - Energy-dependent form factors, but smooth
 - Uncertainties: $f_+(0)$, experiment, Radiative corrections
- $\tau \rightarrow \pi \pi \nu$. Resonance jungle. But same form factor as $e^+e^- \rightarrow$ hadrons Phys.Rev.Lett. 122 (2019) 22, 221801 Main uncertainty: radiative corrections. Some progress...Bruno et al.

Cabibbo angle

• $\tau \rightarrow$ inclusive. Total decay width. OPE prediction for V_{us} independently confirmed by lattice, ETMC. Experiments could improve BR precision (potential V_{us} closer to K, enough to test realistic BSM?)

•
$$n \rightarrow pe\nu$$
, $\mathcal{N} \rightarrow \mathcal{N}'e\nu$. $p \ll M_n \sim M_p$. Non-relativistic EFT

$$\mathcal{L}^{(0)} = -(\psi_p^{\dagger}\psi_n) \left[C_V^+ \bar{e}_L \gamma^0 \nu_L + C_S^+ \bar{e}_R \nu_L \right] + (\psi_p^{\dagger} \sigma^k \psi_n) \left[C_A^+ \bar{e}_L \gamma^k \nu_L + C_T^+ \bar{e}_R \gamma^0 \gamma^k \nu_L \right]$$

$$\begin{split} \mathcal{L}^{(1)} &= \frac{1}{2m_N} \left\{ i C_P^+(\psi_p^{\dagger} \sigma^k \psi_n) \nabla_k \left(\bar{\mathfrak{e}}_R \nu_L \right) - C_M^+ \epsilon^{ijk} (\psi_p^{\dagger} \sigma^j \psi_n) \nabla_i \left(\bar{\mathfrak{e}}_L \gamma^k \nu_L \right) \right. \\ &\left. - i C_E^+(\psi_p^{\dagger} \sigma^k \psi_n) \nabla_k \left(\bar{\mathfrak{e}}_L \gamma^0 \nu_L \right) - i C_{E'}^+(\psi_p^{\dagger} \sigma^k \psi_n) \partial_t \left(\bar{\mathfrak{e}}_L \gamma^k \nu_L \right) \right. \\ &\left. - i C_{T1}^+(\psi_p^{\dagger} \psi_n) \nabla_k \left(\bar{\mathfrak{e}}_R \gamma^0 \gamma^k \nu_L \right) + i C_{T2}^+(\psi_p^{\dagger} \phi^k) (\bar{\mathfrak{e}}_R \overleftrightarrow{t}_L \nu_L) + 2i C_{T3}^+(\psi_p^{\dagger} \sigma^k \psi_n) (\bar{\mathfrak{e}}_R \overleftrightarrow{t}_L \nu_L) \right. \\ &\left. - i C_{FV}^+(\psi_p^{\dagger} \overleftrightarrow{t}_k \psi_n) (\bar{\mathfrak{e}}_L \gamma^k \nu_L) + i C_{FA}^+(\psi_p^{\dagger} \sigma^k \overleftrightarrow{t}_k \psi_n) (\bar{\mathfrak{e}}_L \gamma^0 \nu_L) + 2i C_{T3}^+(\psi_p^{\dagger} \sigma^i \overleftrightarrow{t}_j \psi_n) (\bar{\mathfrak{e}}_R \gamma^0 \gamma^k \nu_L) \right\}, \\ &\left. - i C_{FV}^+(\psi_p^{\dagger} \overleftrightarrow{t}_k \psi_n) (\bar{\mathfrak{e}}_L \gamma^k \nu_L) + i C_{FA}^+(\psi_p^{\dagger} \sigma^k \overleftrightarrow{t}_k \psi_n) (\bar{\mathfrak{e}}_L \gamma^0 \nu_L) + C_{FT}^+ \epsilon^{ijk} (\psi_p^{\dagger} \sigma^i \overleftrightarrow{t}_j \psi_n) (\bar{\mathfrak{e}}_R \gamma^0 \gamma^k \nu_L) \right\}, \\ &\left. \right. \\ \left. \right. \\ \left.$$

What about CPV? See for example Eur.Phys.J.C 82 (2022) 12, 1134

$$\begin{split} & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \mathcal{L}_{eff} \end{array} & \approx & - \frac{\mathcal{G}_{\mu} V_{uD}}{\sqrt{2}} \left[\left(1 + \epsilon_{L}^{D\ell} \right) \bar{\ell} \gamma_{\mu} (1 - \gamma_{5}) \nu_{\ell} \cdot \bar{\upsilon} \gamma^{\mu} (1 - \gamma_{5}) D + \epsilon_{R}^{D\ell} \ \bar{\ell} \gamma_{\mu} (1 - \gamma_{5}) \nu_{\ell} \cdot \bar{\upsilon} \gamma^{\mu} (1 + \gamma_{5}) D \\ & \\ & + \bar{\ell} (1 - \gamma_{5}) \nu_{\ell} \cdot \bar{\upsilon} \left[\epsilon_{S}^{D\ell} - \epsilon_{P}^{D\ell} \gamma_{5} \right] D + \frac{1}{4} \dot{\epsilon}_{T}^{D\ell} \ \bar{\ell} \sigma_{\mu\nu} (1 - \gamma_{5}) \nu_{\ell} \cdot \bar{\upsilon} \sigma^{\mu\nu} (1 - \gamma_{5}) D \right] + \text{h.c.} \end{split}$$

$(\hat{V}_{in} = V_{in}(1 + \epsilon_{i}^{se} + \epsilon_{i}^{s}))$		0.22306(56)	\	(0)				
$\epsilon_{II}^{dse} \equiv \epsilon_{I}^{de} + \frac{\hat{V}_{eI}^2}{\hat{V}_{eI}} \epsilon_{I}^{de}$		2.2(8.6)	$\times 10^{\wedge}$	- 3				
ϵ_R^d		- 3.3(8.2)		- 3				
ϵ_S^{de}		3.0(9.9)		- 4				
ϵ_P^{de}		1.3(3.4)		- 6				
$\hat{\epsilon}_T^{de}$		- 0.4(1.1)		- 3				
$\epsilon_L^{s\mu/e}$		0.8(2.2)		- 3				
ϵ_R^s	=	0.2(5.0)		- 2				
ϵ_p^{se}		- 0.3(2.0)		- 5				
$\epsilon_L^{d\mu/e} - \epsilon_P^{d\mu} \frac{m_{e\pm}^2}{m_{\mu}(m_e+m_d)}$		- 0.5(1.8)		- 2	1			
$\epsilon_S^{s\mu}$		- 2.6(4.4)		- 4				
$\epsilon_p^{s\mu}$		- 0.6(4.1)		- 3				
$\hat{\epsilon}_{T}^{s\mu}$		0.2(2.2)		- 2				
$\epsilon_L^{d\tau/e}$		0.1(1.9)		- 2				
$\epsilon_P^{d\tau}$		9.2(8.6)		- 3				
$\hat{\epsilon}_{T}^{d\tau}$		1.9(4.5)		- 2				
$\epsilon_L^{s\tau/e} - \epsilon_P^{s\tau} \frac{m_{K^{\pm}}^*}{m_r(m_s+m_t)}$		0.0(1.0)		- 1				
$\left(e_L^{s_T/e} + 0.08(1)e_S^{s_T} - 0.38e_P^{s_T} + 0.40(13)\hat{e}_T^{s_T} \right)$		0.7(5.2)		(-2)				
JHEP 04 (2022)	JHEP 04 (2022) 152							

- Simplified scenario: LFU and forget about contact terms, ε_{P,T,S} = 0
- $\bullet \hspace{0.1 cm} \theta_{12}^{\textit{KI3}} < \theta_{12}^{\textit{KI2}} < \theta_{12}^{\beta}$
- ϵ_R^s needed for first (opposite interference with SM). Possible explanation: VLQ doublet. E.g.

Phys.Rev.D 108 (2023) 3, 035022

$$\epsilon_R^s \sim C_{Hud}^{12} \sim rac{h_u^* h_s}{M_Q^2}$$

• But beware of $K \rightarrow \pi \pi !$ e.g.2311.00021

One parameter fits

Class	Coefficients	Warsaw basis	95% CL Individual	95% CL Marginalised	
	CtG	C _{uG}	[0.01,0.11]	[0.01,0.23]	
Dipoles	c _{tW}	C _{uW}	[-0.085,0.030]	[-0.28,0.13]	
	c _{tZ}	$-s_{\theta} C_{uB} + c_{\theta} C_{uW}$	[-0.038,0.090]	[-0.50,0.14]	
	c_{HQ}^3	$C_{Hq}^{(3)}$	[-0.39,0.34]	[-0.42,0.31]	
Higgs Top	$c_{HQ}^{(-)}$	$C_{Hq}^{(1)} - C_{Hq}^{(3)}$	[-1.1,1.5]	[-2.7,2.7]	
Figgs-Top	C _{Ht}	C _{Hu}	[-2.8,2.2]	[-15,4]	
	C _{tH}	C _{uH}	[-1.3,0.4]	[-0.5,2.9]	
4 quarks	c_{QQ}^1	$2C_{qq}^{(1)} - \frac{2}{3}C_{qq}^{(3)}$	[-2.3,2.0]	[-3.7,4.4]	
	c_{QQ}^{8}	$8C_{qq}^{(3)}$	[-6.8,5.9]	[-13,10]	
	c_{Qt}^1	$C_{qu}^{(1)}$	[-1.8,1.9]	[-1.5,1.4]	
	c_{Qt}^8	$C_{qu}^{(8)}$	[-4.3,3.3]	[-3.4,2.5]	
	c_{tt}^1	Cuu	[-1.1,1.0]	[-0.88,0.81]	

SMEFiT, JHEP 11 (2021) 089

One parameter fits

Wilson	μ	ightarrow e	$\tau \rightarrow$	$\rightarrow \mu$	au o e		
VVIISOIT	Limit	Dominant	Limit	Dominant	Limit	Dominant	
$C^{(3)}_{lequ}$	3.9×10^{-9}	$\mu ightarrow e \gamma$	$5.0 imes10^{-5}$	$\tau ightarrow \mu \gamma$	4.4×10^{-5}	$\tau \to {\rm e}\gamma$	
$C_{lequ}^{(1)}$	$3.6 imes10^{-5}$	$\mu ightarrow$ 3e, e γ	$2.7 imes 10^{-2}$	$\tau \to \mu \gamma$	$2.4 imes 10^{-2}$	$\tau \to {\rm e}\gamma$	
$C_{lq}^{(3)}$	$6.7 imes10^{-5}$	$\mu {\rm Au} \to e {\rm Au}$	$7.1 imes 10^{-2}$	$\tau \to \mu \pi \pi$	$7.4 imes 10^{-2}$	$\tau \to e\pi\pi$	
$C_{lq}^{(1)}$	$4.0 imes 10^{-5}$	$\mu {\rm Au} \to e {\rm Au}$	$1.1 imes 10^{-1}$	$\tau \to \mu \pi \pi$	$1.1 imes 10^{-1}$	$\tau \to e\pi\pi$	
Clu	$4.0 imes 10^{-5}$	$\mu {\rm Au} \to e {\rm Au}$	$1.0 imes 10^{-1}$	$\tau \to \mu \pi \pi$	$1.1 imes 10^{-1}$	$\tau \to e\pi\pi$	
Ceu	$3.6 imes10^{-5}$	$\mu {\rm Au} \to e {\rm Au}$	$1.0 imes 10^{-1}$	$\tau \to \mu \pi \pi$	$1.1 imes 10^{-1}$	$\tau \to e\pi\pi$	
C _{qe}	3.6×10^{-5}	$\mu {\rm Au} \to {\it e} {\rm Au}$	$1.0 imes 10^{-1}$	$\tau \to \mu \pi \pi$	$1.0 imes 10^{-1}$	$\tau \to e\pi\pi$	

Gaussian fits

Limited attempt to overcome previous limitations

• Take
$$\vec{C} = (C_{qq}^{(+)}, C_{qq}^{(-)}, C_{uu}, C_{qu}^{(1)}, C_{qu}^{(8)}, C_{Hq}^{(+)}, C_{Hq}^{(-)}, C_{Hu}, C_{uH}, C_{uG}, C_{uW}, C_{uB})$$
.

•
$$\chi^2 = \chi^2_{\text{best-fit}} + (C_i - \mu_{C_i})(\sigma^2)_{ij}^{-1}(C_j - \mu_{C_j}) = \chi^2_{\text{best-fit}} + \frac{(K_i - \mu_{K_i})^2}{\sigma^2_{K_i}}$$

Coefficient	Gaussian fit $[{\rm TeV}^{-2}]$	Coefficient	Gaussian fit $[{\rm TeV}^{-2}]$
K1	0.0019 ± 0.0023	K7	0.54 ± 0.79
K2	0.0179 ± 0.0083	K ₈	0.74 ± 0.88
K3	-0.002 ± 0.015	K_9	-0.8 ± 1.3
K4	-0.016 ± 0.021	K ₁₀	-0.7 ± 1.8
K5	0.044 ± 0.029	K ₁₁	12 ± 13
K ₆	-0.30 ± 0.38	K ₁₂	-11 ± 16

	-1.00	0.000	0.000	-0.016	-0.004	-0.004	0.021	-0.001	0.000	0.000	0.000	0.000
	-0.005	-0.089	-0.015	0.058	0.000	0.984	-0.004	-0.117	0.000	-0.009	0.044	0.063
	0.004	0.011	-0.039	0.018	-0.001	-0.1	0.145	-0.28	0.015	-0.494	0.447	0.667
	-0.007	-0.013	0.09	-0.053	-0.003	0.081	-0.316	0.64	0.024	-0.673	-0.126	-0.059
	0.005	0.007	-0.074	0.042	-0.002	-0.025	0.259	-0.525	0.025	-0.548	-0.213	-0.55
,	-0.004	-0.041	0.025	0.067	0.006	-0.004	-0.128	0.084	0.006	0.022	0.853	-0.492
укс =	-0.006	-0.137	0.078	0.196	0.96	-0.017	0.09	0.047	-0.065	-0.007	-0.017	0.008
	0.002	-0.349	-0.006	0.646	-0.248	-0.029	0.545	0.318	0.014	0.001	-0.012	0.006
	0.005	0.007	0.028	-0.138	0.077	0.017	0.145	0.06	0.973	0.037	0.017	-0.003
	0.023	0.221	0.074	-0.569	0.053	0.092	0.684	0.292	-0.212	-0.002	0.095	-0.057
	0.006	-0.798	0.451	-0.364	-0.071	-0.059	-0.038	-0.122	-0.039	0.000	-0.012	0.007
	-0.004	0.404	0.876	0.235	-0.058	0.025	0.017	-0.093	0.013	0.000	-0.01	0.006

- Assume $\Lambda_{BSM} \sim 1 \,\mathrm{TeV}$. Very loosely, using Phys.Lett.B 726 (2013) 697-702 $V_{\mathrm{EFT}} \sim \frac{\pi^6}{720} \left(\frac{(4\pi)}{\mathrm{TeV}^2}\right)^3 \left(\frac{(4\pi)^2}{\mathrm{TeV}^2}\right)^8 \left(\frac{(4\pi)^3}{\mathrm{TeV}^2}\right)$
- Experimental constraints reduce it to a tiny fraction ($\sim 10^{-31}$)

Applications to UV model I: tau-philic S_1

•
$$S_1 \sim (\bar{\mathbf{3}}, \mathbf{1})_{+1/3}$$

• $\mathcal{L} \supset \lambda_{t\tau} \, \bar{q}_3^c i \sigma_2 I_3 \, S_1 + \text{h.c.} \; ,$

Applications to UV models II: Cabibbo anomalies

- Assume a Cabibbo tensions are new physics hints. Can they (at least partially) be accommodated in top-philic set-up?
- $[C_{lq}^{(3),22}]^{
 m Cabibbo} = (0.19 \pm 0.06) \, {
 m TeV^{-2}}.$ What is pulling this?
- Dominated by

$$\begin{split} \Delta_{\rm CKM} &\equiv |V_{ud}^{\beta}|^2 + |V_{us}^{\mathcal{K}_{\ell 3}}|^2 - 1 \approx -2v^2 \left(|V_{ud}|^2 C_{\mathcal{H}I}^{(3),22} - |V_{us}|^2 (C_{\mathcal{H}I}^{(3),\ell\ell} - C_{\mathcal{H}I}^{(3),11} - C_{\mathcal{H}I}^{(3),22})\right) \\ &\approx -2v^2 \, C_{\mathcal{H}I}^{(3),22} \sim - \left[\frac{N_c}{2\pi^2} \frac{m_t^2}{\Lambda_{\rm UV}^2} \log \frac{\Lambda_{\rm UV}}{M_Z}\right] \Lambda_{\rm UV}^2 C_{lq}^{(3),22} (\Lambda_{\rm UV}^2) \end{split}$$

- However... $[C_{lq}^{(3),22}]^{\mathrm{EW/Higgs}} = (-0.11 \pm 0.06) \,\mathrm{TeV^{-2}}$ Why?
- EW fit prefers $G_{\mu} < G_{F}$. Oversimplifying

$$M_W^{2,EW} \sim rac{M_Z^2}{2} \left(1 + \sqrt{1 - rac{\sqrt{8}\pilpha}{G_\mu M_Z^2}}
ight) < M_W^2$$

Applications to UV models II: anomalies

• Reduce G_{μ} by also switching on $[C_{lq}^{(3),11}]$? Stringent bounds on δg_L^{Ze}

• Unless
$$[C_{lq}^{(3),11}] = [C_{lq}^{(1),11}] (\sim U_1)$$
 Take also $C_{lq}^{(1),22} \approx 3C_{lq}^{(3),22}$
 $(\sim S_3)$

B/K physics avoided if top-philic condition in the down-quark basis