Measurements of the top-quark mass using the ATLAS detector at the LHC

Thomas McLachlan on behalf of the ATLAS collaboration

LHCP 2024 | Boston

7th June 2024

Thomas McLachlan

Introduction

- Top quark mass (m_{t}) is a fundamental parameter of the Standard Model (SM)
 - Highest coupling to the Higgs boson
- $m_t, m_W \& m_H$ measurements can be compared to Electro-Weak (EW) fit predictions to check validity of SM
- EW vacuum is meta-stable in SM
 - Implications on the fate of the universe
 - If no new physics up to the Planck scale \rightarrow stability of SM vacuum is dependent on m_{H} and m_{t}

Thomas McLachlan

Methods to measure the top-quark mass

ATLAS measures top-quark in various ways

Direct measurement m_t^{MC}

- Observables reconstructed from top decay products
- Data compared to MC simulations with different input values of m_t

ATLAS+CMS Preliminary m _{top} s	summary, √s = 1.96-13 TeV April	2024
LHC comb. (Feb 2024), 7+8 TeV LHC <i>top</i> wg [1] statistical uncertainty total uncertainty	total stat	
LHC comb. (Feb 2024), 7+8 TeV	172.52 ± 0.33 (0.14 ± 0.30)	≤20 fb ⁻¹ [1]
World comb. (Mar 2014), 1.9+7 TeV	173.34 ± 0.76 (0.36 ± 0.67)	≤8.7 fb ⁻¹ , [2]
ATLAS, I+jets, 7 TeV	172.33 ± 1.27 (0.75 ± 1.02)	4.6 fb ⁻¹ , [3]
ATLAS, dilepton, 7 TeV	173.79 ± 1.42 (0.54 ± 1.31)	4.6 fb ⁻¹ [3]
ATLAS, all jets, 7 TeV	175.1±1.8 (1.4±1.2)	4.6 fb ⁻¹ , [4]
ATLAS, dilepton, 8 TeV	172.99 ± 0.84 (0.41± 0.74)	20.3 fb ⁻¹ , [5]
ATLAS, all jets, 8 TeV	173.72 ± 1.15 (0.55 ± 1.02)	20.3 fb ⁻¹ , [6]
ATLAS, I+jets, 8 TeV	172.08 ± 0.91 (0.39 ± 0.82)	20.2 fb ⁻¹ , [7]
ATLAS comb. (Feb 2024) 7+8 TeV	172.71 ± 0.48 (0.25 ± 0.41)	≤ 20.3 fb ⁻¹ [1]
ATLAS, leptonic inv. mass, 13 TeV	174.41±0.81 (0.39±0.66±0.25)	36.1 fb ⁻¹ , [8]
ATLAS, dilepton (*), 13 TeV	$172.21 \pm 0.80 \; (0.20 \pm 0.67 \pm 0.39)$	139 fb ⁻¹ [9]

Thomas McLachlan

Indirect measurement

- From cross-sections (inclusive/differential)
- Measure observable(s) with a strong dependence on m_t with data unfolding
 - Compare to first principle calculations e.g. m^{pole}_{t} , MS scheme

Direct Measurements:

m^{MC}_{t} from $t\bar{t} \rightarrow dilepton channel using the template method$

 $(13 \text{ TeV}, \mathcal{L} = 139 \text{ fb}^{-1})$

*m^{MC}*_t from template method Selection and reconstruction

Reconstruction

- Correct matching: b-jet to lepton
- Use a DNN, which uses as input variables:
 - Kinematic variables of the individual objects
 - Kinematic variables and the invariant masses of all lb pairs
 - Choose the permutation (out of 2) with the highest DNN value

Final Selection

- DNN_{Hiah} > 0.65
 - Select the ℓ b-pair with largest p_{τ}
 - $\circ p_{T,\ell b} > 160 \, \text{GeV}$
 - *b*-jet in that pair must be leading *b*-jet
- Reduced signal modelling and jet-related uncertainties

ATLAS-CONF-2022-058

Thomas McLachlan

DESY.

ATLAS-CONF-2022-058

*m^{MC}*_t from template method Mass extraction

- Unbinned maximum likelihood fit to data in range Between 50 and 140 GeV
 - Estimator: $m^{High}_{\ell b}$ invariant mass of selected ℓb -pair
 - Templates derived from ttbar and single-top samples
- Background fraction after the final selection: 0.6%
 - Not included in fit

$m_{t}^{MC} \text{from template method}$ $m_{t}^{MC} = 172.21 \pm 0.20 \text{ (stat)} \pm 0.67 \text{ (syst)} \pm 0.39 \text{ (recoil) GeV}$

Dominant uncertainties come from the modelling:

- Matrix-element matching (0.40 GeV)
- Recoil Scheme (0.39 GeV)
- Jet Energy Scale (0.37 GeV)
- Colour reconnection (0.27 GeV)
- Data statistics (0.20 GeV)

Compatible with ATLAS and LHC combinations from Run-1 Similar precision to ATLAS measurement in same channel at 8 TeV

- Choice of recoil scheme impacts subsequent radiation off the *b*-quark after the first gluon emission
- Default option: Use b-quark as recoiler
- Latest option: Use top quark as recoiler
- Both vary the amount of :
 - Out-of-cone radiation and W/b momentum fraction
 - Translates into a shift of the inferred mtop.
- Recoil-to-top vs Recoil-to-*b* taken as an additional uncertainty.
- Current uncertainties probably overestimate the effect.
 - Hence treated separately in final results

Thomas McLachlan

Direct Measurements:

m^{MC}_{t} from $t\overline{t} \rightarrow \ell + jets$ using soft-muon tagging (SMT)

 $(13 \text{ TeV}, \mathcal{L} = 36.1 \text{ fb}^{-1})$

JHEP06(2023)019

*m^{MC}*_t from soft muon tagging Analysis strategy

Direct measurement of m^{MC}_{t}: from $t\overline{t} \rightarrow \ell$ + jets channel using experimental technique

Method to extract m^{MC}.

- Build m₁₁: semi-leptonic decay of top-quark
 - ℓ : prompt lepton from the W-boson decay
 - μ : soft muon from a *b*-hadron decay (SMT)
- Less sensitive to the jet related uncertainties
- Less sensitive to the modelling of top production
- Sensitive to the description of the *b*-fragmentation and *b*, *c*-hadron decays

JHEP06(2023)019

m^{MC} , from soft muon tagging Mass extraction

- Profiled Binned likelihood template fit in the sensitive 15-80 GeV region of m_{μ}
 - Simultaneously in OS and SS events Ο
- Features 3 different masses for top
- Higher sensitivity of OS region to m_{t} well visible.

Thomas McLachlan

Compatible with ATLAS combination at 2.2σ

Dominant uncertainties come from the modelling and stats:

- Branching ratio of *b*/c hadrons (0.40 GeV)
- Data statistics (0.39 GeV) [partial Run-2]
- Recoil Scheme (0.25 GeV) (not profiled)
- Initial State QCD radiation (0.23 GeV)
- *b*-quark fragmentation r_b (0.19 GeV)

Direct Measurements:

LHC top-quark mass combination in ATLAS/CMS

(7-8 TeV)

2402.08713 LHC top-quark mass combination in ATLAS/CMS Run-1 **Methodology**

	Uncontainty catogony	Uncert	ainty impa	act [Gev]
		LHC	ATLAS	CMS
Combination of 15 mass measurements performed by the ATLAS and CMS	b-JES	0.18	0.17	0.25
	b tagging	0.09	0.16	0.03
n different final state channels	ME generator	0.08	0.13	0.14
	JES 1	0.08	0.18	0.06
Matha al al anna	JES 2 Method	0.08	0.11	0.10
Methodology:	CMSh hadron B	0.07	0.00	0.09
	OCD radiation	0.06	0.07	0.10
 Use Best Linear Unbiased Estimator method (BLUE) 	Leptons	0.05	0.08	0.07
	JER	0.05	0.09	0.02
	CMS top quark $p_{\rm T}$	0.05	—	0.07
$m - \sum w m i$ where $\sum w - 1$	Background (data)	0.05	0.04	0.06
$m_t - \sum w_i m_t$, where $\sum w_i - 1$	Color reconnection	0.04	0.08	0.03
	Underlying event	0.04	0.03	0.05
 Correlations between experiment senter via systematic uncertainties 	g-JES	0.03	0.02	0.04
• Correlations between experiment \rightarrow enter via systematic uncertainties	Other	0.03	0.07	0.01
 Must calculate/estimate the correlation between the 	1-IFS	0.03	0.00	0.01
	CMS IES 1	0.03		0.04
measurements to get final covariance matrix.	Pileup	0.03	0.07	0.03
	JES 3	0.02	0.07	0.01
Uncentrative	Hadronization	0.02	0.01	0.01
<u>Uncertainties</u>	$p_{\mathrm{T}}^{\mathrm{miss}}$	0.02	0.04	0.01
 b-JES is dominant 	PDF	0.02	0.06	< 0.01
• Ctata	Trigger	0.01	0.01	0.01
■ Stats	Total systematic	0.30	0.41	0.39
 b-tagging 	Statistical	0.14	0.25	0.14
• ME generator	Total	0.33	0.48	0.42

DESY.

JFS.

IC M

2402.08713

Top-quark mass combination ATLAS/CMS

Results

$m_t = 172.52 \pm 0.14$ (stat) ± 0.30 (syst) GeV

- Uncertainty of 0.33 GeV < 2 permil precision on top mass
- 31% improvement on most precise input
- Excellent compatibility, $\chi^2 = 7.5$; $p(\chi^2) = 0.91$
- Most precise measurement to date

ATLAS+CMS Preliminary LHCtopWG	m_{top} summary, $\sqrt{s} =$	1.96-13 TeV Apr	il 2024
LHC comb. (Feb 2024), 7+8 TeV LHC	lopwg [1]		
statistical uncertainty	total	stat	
total uncertainty	m + tota	l (etat + evet + recoil) (G	M L dt Rot
I HC comb (Feb 2024) 7+8 TeV	172 52 ±	0.33 (0.14 + 0.30)	<20 fb ⁻¹ [1]
World comb. (Mar 2014), 1.9+7 TeV	▼ 173.34 +	0.76 (0.36 ± 0.67)	<8.7 fb ⁻¹ [2]
ATLAS, I+iets, 7 TeV	172.33 ±	1.27 (0.75 ± 1.02)	4.6 fb ⁻¹ , [3]
ATLAS, dilepton, 7 TeV	173.79 ±	1.42 (0.54 ± 1.31)	4.6 fb ⁻¹ [3]
ATLAS, all jets, 7 TeV	175.1±1	.8 (1.4 ± 1.2)	4.6 fb ⁻¹ , [4]
ATLAS, dilepton, 8 TeV	172.99 ±	0.84 (0.41±0.74)	20.3 fb ⁻¹ , [5]
ATLAS, all jets, 8 TeV	173.72 ±	1.15 (0.55 ± 1.02)	20.3 fb ⁻¹ , [6]
ATLAS, I+jets, 8 TeV	172.08 ±	0.91 (0.39 ± 0.82)	20.2 fb ⁻¹ , [7]
ATLAS comb. (Feb 2024) 7+8 TeV	172.71 ±	0.48 (0.25 ± 0.41)	≤ 20.3 fb ⁻¹ [1]
ATLAS, leptonic inv. mass, 13 TeV	⊢+= ++ 174.41±	0.81 (0.39 ± 0.66 ± 0.25)	36.1 fb ⁻¹ , [8]
ATLAS, dilepton (*), 13 TeV	172.21±	0.80 (0.20 ± 0.67 ± 0.39)	139 fb ⁻¹ [9]
CMS, I+jets, 7 TeV	173.49 ±	1.07 (0.43 ± 0.98)	4.9 fb ⁻¹ , [10]
CMS, dilepton, 7 TeV	172.5 ± 1	.6 (0.4 ± 1.5)	4.9 fb ⁻¹ , [11]
CMS, all jets, 7 TeV	• 173.49 ±	1.39 (0.69 ± 1.21)	3.5 fb ⁻¹ , [12]
CMS, I+jets, 8 TeV	172.35 ±	0.51 (0.16 ± 0.48)	19.7 fb ⁻¹ , [13]
CMS, dilepton, 8 TeV	172.22	0.95 (0.18 -0.93)	19.7 fb ⁻¹ , [14]
CMS, all jets, 8 TeV	172.32 ±	0.64 (0.25 ± 0.59)	19.7 fb ⁻¹ , [13]
CMS, single top, 8 TeV	172.95 ±	1.22 (0.77 +0.97)	19.7 fb ⁻¹ , [15]
CMS comb. (Feb 2024), 7+8 TeV	172.52 ±	0.42 (0.14 ± 0.39)	≤ 19.7 fb ⁻¹ [1
CMS, all jets, 13 TeV	172.34 ±	0.73 (0.20 +0.88)	35.9 fb ⁻¹ [16]
CMS, dilepton, 13 TeV	172.33 ±	0.70 (0.14 ± 0.69)	35.9 fb ⁻¹ , [17]
CMS, I+jets, 13 TeV	171.77 ±	0.37	35.9 fb ⁻¹ , [18]
CMS, single top, 13 TeV	172.13	0.77 (0.32 _{-0.71})	35.9 fb ⁻¹ , [19]
CMS, boosted, 13 TeV	173.06 ±	0.84 (0.24)	138 fb ⁻¹ , [20]
* Preliminary	[1] a0x2402.08713 [9] aH [2] a0x2403.4877 [9] aH [3] EPaC 75 (2015) 330 [10] J [4] EPaC 75 (2015) 158 [17] EF [5] P.B.761 (2016) 350 [12] EF [6] J.HEP 99 (2017) 118 [13] P [7] EPaC 79 (2019) 290 [14] P4	P 06 (2021) 019 [15] CM AD CONF 2022 058 [16] EP In 12 (2012) 105 [17] EP In 22 (2012) 2202 [17] EP In 23 (2014) 2758 [18] EP ID 23 (2016) 072004 [19] JH ID 23 (2016) 072004 [20] EP	IS-PAS-TOP-22-001 JC 79 (2019) 313 JC 79 (2019) 368 JC 83 (2023) 963 EP 12 (2021) 161 JC 83 (2023) 560
165 170	175	180	185
r	n _{ton} [GeV]		

Indirect Measurements:

m^{pole}, using tt+1-jet with the ATLAS experiment

 $(8 \text{ TeV}, \mathcal{L} = 20.2 \text{ fb}^{-1})$

m^{pole} from t*t*+1jet production Analysis strategy

Indirect measurement of m^{pole} ; from differential cross-sections measurement of $t\bar{t}+1$ -jet production.

Method to extract m^{pole}:

- Measure normalised $t\overline{t}+1$ -jet differential distribution as a function of the invariant mass of the $t\overline{t}+1$ -jet system ($m_{t\overline{t}+1-jet}$)
- Compare the unfolded distribution at parton level to NLO+PS $t\overline{t}$ +1-jet calculations

$$\mathcal{R}(m_t^{pole},\rho_s) = \frac{1}{\sigma_{t\bar{t}+1-jet}} \frac{d\sigma_{t\bar{t}+1-jet}}{d\rho_s} (m_t^{pole},\rho_s), \ \rho_s = \frac{340 \, GeV}{m_t \bar{t}+1-jet}$$

JHEP11(2019)150

m_{t}^{pole} from t \overline{t} +1jet production Top-quark mass determination

- Measurement performed using unfolding at parton level.
- m_{t}^{pole} extracted by fitting the \mathcal{R} distribution with the NLO+PS fixed-order predictions (Powheg+Pythia6).

JHEP11(2019)150

The least-squares method is used, the fit minimize a χ^2 :

$$\chi^{2} = \sum_{i,j} \left[\mathcal{R}_{data}^{t\bar{t}+1-jet} - \mathcal{R}_{NLO+PS}^{t\bar{t}+1-jet}(m_{t}^{pole}) \right]_{i} \left[V^{-1} \right]_{ij} \left[\mathcal{R}_{data}^{t\bar{t}+1-jet} - \mathcal{R}_{NLO+PS}^{t\bar{t}+1-jet}(m_{t}^{pole}) \right]_{j},$$
DESY.
Thomas McLachlan
Page 18

m^{pole}_{t} from t \overline{t} +1jet production

Mass scheme	m_t^{pole} [GeV]	$m_t(m_t)$ [GeV]
Value	171.1	162.9
Statistical uncertainty	0.4	0.5
Simulation uncertainties		
Shower and hadronisation	0.4	0.3
Colour reconnection	0.4	0.4
Underlying event	0.3	0.2
Signal Monte Carlo generator	0.2	0.2
Proton PDF	0.2	0.2
Initial- and final-state radiation	0.2	0.2
Monte Carlo statistics	0.2	0.2
Background	< 0.1	< 0.1
Detector response uncertainties		
Jet energy scale (including <i>b</i> -jets)	0.4	0.4
Jet energy resolution	0.2	0.2
Missing transverse momentum	0.1	0.1
b-tagging efficiency and mistag	0.1	0.1
Jet reconstruction efficiency	< 0.1	< 0.1
Lepton	< 0.1	< 0.1
Method uncertainties		
Unfolding modelling	0.2	0.2
Fit parameterisation	0.2	0.2
Total experimental systematic	0.9	1.0
Scale variations	(+0.6, -0.2)	(+2.1, -1.2)
Theory PDF $\oplus \alpha_s$	0.2	0.4
Total theory uncertainty	(+0.7, -0.3)	(+2.1, -1.2)
Total uncertainty	(+1.2, -1.1)	(+2.3, -1.6)

Dominant uncertainties:	1
JES	1
PS and hadronisation	
Color reconnection	
Scale variation	i i
Statistical Uncertainty	1
	/
	、
$m_t^{\text{pole}} = 171.1 \pm 0.4 \text{ (stat)} \pm 0.9 \text{ (syst)} \stackrel{+0.7}{-0.3}$	(theo) GeV
$m_t(m_t) = 162.9 \pm 0.5 \text{ (stat)} \pm 1.0 \text{ (syst)} + 2 - 10 \text{ (syst)}$	$\frac{1}{2}$ (theo) GeV.
$\Delta m_t^{\text{pole}} = {}^{+1.2}_{-1.1} \text{ GeV}$	
	/

Thomas McLachlan

JHEP11(2019)150

Summary

- m_t is a key parameter in the SM and BSM physics, it is known to high precision.
- LHC Run-1 combination in ATLAS/CMS the most precise result to date
 - Precision of 0.33 GeV
- Investigated several approaches:
 - Cross section measurements are used to perform an indirect measurement of m_{t}^{pole}
 - Precision of O(1) GeV
 - A template method is used to perform direct measurement of the top quark mass
 - Precision of 0.80 GeV
 - An experimental method is used to perform direct measurement of the top quark mass
 - Precision of 0.81 GeV
- All the methods provide precise measurements of the top-quark mass compatible with previous results

Direct Measurements:

m^{MC}_{t} from ttbar \rightarrow dilepton channel using the template method

ATLAS-CONF-2022-058

*m^{MC}*_t from template method Preselection

- Two reconstructed leptons with opposite charge with p_{τ} > 28 GeV
- \geq 2 jets with p_{τ} > 25 GeV
- Exactly 2 b-jet, 70% efficiency WP (DL1r)
- Same flavour leptons: $m_{ij} < 80$ GeV or $m_{ij} > 100$ GeV, and $m_{ij} > 15$ GeV
 - Rejects Drell-Yan and Z+jets background events

Data	454960
$t\bar{t}$ signal	445000 ± 28000
Single-top-quark signal	14320 ± 890
Z+jets	10200 ± 4400
Diboson	420 ± 210
$t\bar{t} + V, tWZ, tZq$	1320 ± 200
$t\bar{t} + H$	440 ± 45
NP/fake leptons	760 ± 760
Signal+background	472000 ± 29000
Expected background fraction	0.028 ± 0.010
Data/(Signal + background)	0.963 ± 0.059

m^{MC}, from template method Event reconstruction

Signal events can be classified into 3 categories:

Unmatchable:

Either a reconstructed lepton or jet is not matched to its correct (generator) parton level partner. Requirements are: b-jet $\Delta R = 0.1$ for leptons (lepton from W-decay)

 $\Delta R = 0.3$ for jets. (b-quarks)

Correctly matched:

Each lepton is assigned to its corresponding b-tagged jet

Incorrectly matched:

At least one reconstructed object is not correctly assigned

Reconstruction efficiency $\equiv C/(C+I)$

Signal purity $\equiv C/(C+I+U)$

$m_{t}^{MC} from template method bb4l$ $m_{t} = 172.21 \pm 0.20 \text{ (stat)} \pm 0.67 \text{ (syst)} \pm 0.39 \text{ (recoil) GeV}$

Dominant uncertainties come from the modelling:

- Matrix-element matching (0.40 GeV)
- Recoil Scheme (0.39 GeV)
- Jet Energy Scale (0.37 GeV)
- Colour reconnection (0.27 GeV)
- Data statistics (0.20 GeV)

Check: Impact of off-shell and non-resonants effects on m_t has been estimated using the bb4l generator in Powheg:

 Δm_{+} = -0.23 ± 0.14 GeV < modelling uncertainties

Compatible with ATLAS and LHC combinations from Run-1 Similar precision to ATLAS measurement in same channel at 8 TeV

m^{MC} from template method Systematic uncertainties

	m _{top} [GeV]
Result	172.21
Statistics	0.20
Method	0.05 ± 0.04
Matrix-element matching	0.40 ± 0.06
Parton shower and hadronisation	0.05 ± 0.05
Initial- and final-state QCD radiation	0.17 ± 0.02
Underlying event	0.02 ± 0.10
Colour reconnection	0.27 ± 0.07
Parton distribution function	0.03 ± 0.00
Single top modelling	0.01 ± 0.01
Background normalisation	0.03 ± 0.02
Jet energy scale	0.37 ± 0.02
<i>b</i> -jet energy scale	0.12 ± 0.02
Jet energy resolution	0.13 ± 0.02
Jet vertex tagging	0.01 ± 0.01
b-tagging	0.04 ± 0.01
Leptons	0.11 ± 0.02
Pile-up	0.06 ± 0.01
Recoil effect	0.39 ± 0.09
Total systematic uncertainty (without recoil)	0.67 ± 0.05
Total systematic uncertainty (with recoil)	0.77 ± 0.06
Total uncertainty (without recoil)	0.70 ± 0.05
Total uncertainty (with recoil)	0.80 ± 0.06

The top quark mass is measured in dileptonic channel using lepton/b-jet invariant mass with a total uncertainty of 0.80 GeV.

Dominant uncertainties come from the modelling:

- Matrix-element matching (0.40 GeV)
- Recoil Scheme (0.39 GeV)
- Jet Energy Scale (0.37 GeV)
- Corlour reconnection (0.27 GeV)
- Data statistics (0.20 GeV)

Direct Measurements:

 m_{t}^{MC} from ttbar \rightarrow l + jets using soft-muon tagging (SMT)

m^{MC}, from soft muon tagging Event Selection and reconstruction

- Exactly 1 isolated e or μ (associated to W-boson decay)
- Requirement in E^{miss} and $M_{\tau}(W)$ to infer presence of neutrino
- ≥ 4 jets
- \geq 1 b-jet, 77% efficiency WP
- \geq 1 SMT jet (i.e. μ with p_{τ} > 8 GeV found within ΔR < 0.4 of a jet)
- Event yields after selection: 67k (SS) and 42k (OS). signal purity: 86% and 88%

m^{MC}_{t} from soft muon tagging OS and SS

- Sample split into OS (mostly direct $b \rightarrow \mu X$ decays) vs SS (mostly sequential $b \rightarrow cX' \rightarrow \mu X''$)
 - OS: 83% same top, 10% different top, 7% unmatched to b from top (mostly from t → W → cs)
 - SS: 57% same top, 41% different top, 2% unmatched

m^{MC}_t from soft muon tagging Fit results

No strong pulls or constraints are observed in the ranking plots for the main uncertainties

Numerous checks performed showing fit stability

- BR b→cc→mu
- BR b→mu
- Initial State QCD radiation
- r_b: impacts fragmentation

m^{MC}, from soft muon tagging Systematic uncertainties

Source	Unc. on m_t [GeV]	Stat. precision [GeV]
Statistical and datasets		
Data statistics	0.39	
Signal and background model statistics	0.17	
Luminosity	< 0.01	± 0.01
Pile-up	0.07	± 0.03
Modelling of signal processes		
Monte Carlo event generator	0.04	± 0.06
b, c-hadron production fractions	0.11	± 0.01
b, c-hadron decay BRs	0.40	±0.01
<i>b</i> -quark fragmentation r_b	0.19	±0.06
Parton shower α_S^{FSR}	0.07	± 0.04
Parton shower and hadronisation model	0.06	± 0.07
Initial-state QCD radiation	0.23	± 0.08
Colour reconnection	< 0.01	±0.02
Choice of PDFs	0.07	± 0.01
Modelling of background processes		
Soft muon fake	0.16	± 0.03
Multijet	0.07	±0.02
Single top	0.01	± 0.01
W/Z+jets	0.17	± 0.01
Detector response		
Leptons	0.12	± 0.01
Jet energy scale	0.13	± 0.02
Soft muon jet p _T calibration	< 0.01	± 0.01
Jet energy resolution	0.08	± 0.07
b-tagging	0.10	± 0.01
Missing transverse momentum	0.15	±0.01
Total stat. and syst. uncertainties (excluding recoil)	0.77	±0.03
Recoil uncertainty	0.25	
Total uncertainty	0.81	

The top quark mass is measured using a leptonic invariant mass involving SMT muons with a total uncertainty of 0.81 GeV.

Dominant uncertainties come from the modelling:

- Branching ratio of b/c hadrons (0.40 GeV)
- Data statistics (0.39 GeV) [partial Run-2]
- Recoil Scheme (0.25 GeV) (not profiled)
- Initial State QCD radiation (0.23 GeV)
- b-quark fragmentation r_b (0.19 GeV)

Background modelling and calibration of jet energies is subdominant

m^{MC}_t from soft muon tagging Results

Thomas McLachlan

Page 33

 $m_{t} = 174.41 \pm 0.39$ (stat) ± 0.66 (syst) GeV ± 0.25 (recoil)

DESY.

Compatible with ATLAS combination at 2.2sigma Precise measurement, competitive with "standard" direct techniques!

Direct Measurements:

LHC top-quark mass combination in ATLAS/CMS (7-8 TeV)

Top-quark mass combination ATLAS/CMS Correlation strength

Between ATLAS & CMS: estimate

- Uncorrelated: $\rho = 0$ [-0.25, 0.25]
- Partially correlated: $\rho = 0.5$ [0.25, 0.75]
- Strongly correlated: $\rho = 0.85$ [0.75, 1.0]

Scan around nominal value to test stability of the guess

Top-quark mass combination ATLAS/CMS Systematic uncertainties and correlations

b-JES/g-JES : strong dependence on MC

Leptons/Trigger: from data b-tagging : relies on MC

Modelling uncertainties : almost all correlated

	Uncertainty category	ρ	Scan range	$\Delta m_{\rm t}/2$ [MeV]	$\Delta \sigma_{m_{\rm t}}/2$ [MeV]	
	IES 1	0				
	IES 2	0	[-0.25, +0.25]	8	7	
	IES 3	0.5	[+0.25, +0.75]	1	<1	
	b-JES	0.85	[+0.5, +1]	26	5	
;	g-JES	0.85	[+0.5, +1]	2	<1	
	1-JES	0	[-0.25, +0.25]	1	<1	
	CMS JES 1	_	_	_	_	
	JER	0	[-0.25, +0.25]	5	1	Vary in range \rightarrow shift in central
	Leptons	0	[-0.25, +0.25]	2	2	
	b tagging	0.5	[+0.25, +0.75]	1	1	value of m _{top}
	$p_{\rm T}^{\rm miss}$	0	[-0.25, +0.25]	<1	<1	lop
	Pileup	0.85	[+0.5, +1]	2	<1	
	Trigger	0	[-0.25, +0.25]	<1	<1	
	ME generator	0.5	[+0.25, +0.75]	<1	4	
	OCD radiation	0.5	[+0.25, +0.75]	7	1	
	Hadronization	0.5	[+0.25, +0.75]	1	<1	Mild dependence on b-JES
	CMS b hadron ${\cal B}$	_		_	_	
	Color reconnection	0.5	[+0.25, +0.75]	3	1	correlations
	Underlying event	0.5	[+0.25, +0.75]	1	<1	
	PDF	0.85	[+0.5, +1]	1	<1	
	CMS top quark $p_{\rm T}$	_	_	_	_	
	Background (data)	0	[-0.25, +0.25]	8	2	
	Background (MC)	0.85	[+0.5, +1]	2	<1	
	Mathad	0	() = (e) (-]	_		
	Method Other	0	_	_		
	Ouler	U		_	_	

Top-quark mass combination ATLAS/CMS Cross-check

Final cross-check: compare the various fit scenarios

- ATLAS-only combination
- CMS-only combination
- simultaneous combination but with 2 mass parameters
- simultaneous combination with 1 mass parameter = LHC combination

All in excellent agreement with each other

Top-quark mass combination ATLAS/CMS Important Analyses

	ATLAS									CMS					
		2011 (77	TeV)	2	012 (8 Te	eV)		2011 (77	TeV)			2012	(8 TeV)		
	dil	lj	aj	dil	lj	aj	dil	lj	aj	dil	lj	aj	t	J/ψ	vtx
Pull	+0.93	-0.15	+1.43	+0.61	-0.51	+1.09	-0.01	+0.96	+0.71	-0.33	-0.47	-0.37	+0.38	+0.31	+1.08
Weight	-0.02	+0.07	+0.00	+0.16	+0.17	+0.03	-0.08	-0.01	+0.03	+0.12	+0.34	+0.12	-0.03	+0.01	+0.08

ATLAS:

lepton + jets (8TeV) dilepton (8TeV)

CMS:

lepton + jets (8TeV)

Indirect Measurements:

m^{pole}, using tt+1-jet with the ATLAS experiment (8 TeV)

JHEP11(2019)150

m^{pole}_{t} from t \overline{t} +1jet production Event Selection and reconstruction

- Exactly 1 reconstructed e or μ with p_{τ} > 25 GeV.
- >= 5 jets (anti $_{kt}$ jet reconstruction algorithm).
- The extra jet is the leading jet with $p_{\tau} > 50$ GeV and $|\eta| < 2.5$.
 - Not used in the $t\overline{t}$ reconstruction.

Channel	e+jets	μ +jets
tī	5530 ± 470	7080 ± 600
Single top	191 ± 15	226 ± 18
W+jets	100 ± 33	121 ± 37
Z+jets	24 ± 8	13 ± 4
Multijet	21 ± 11	<11
Prediction	5870 ± 540	7440 ± 660
Data	6379	7824

e+jets channel: signal purity of ~ 94% μ +jets channel: signal purity of ~ 95%

JHEP11(2019)150

m^{pole} from t*t*+1jet production Reconstruction

Hadronically decaying W-boson

Collecting all pairs of jets that are not b-tagged

- $0.9 < m_W/m_{ij} < 1.25$
- $\min\left(p_{\mathrm{T}}^{i}, \ p_{\mathrm{T}}^{j}\right) \cdot \Delta R_{ij} < 90 \text{ GeV}$

Leptonically decaying W-boson

Neutrino inferred by MET > 30 GeV and $M_T(W) > 30$ GeV

W-boson: lepton + up to 2 neutrinos

Top quark candidates

Combine all the hadronic and leptonic W-boson candidates with the two b-tagged jets

Select one that minimised the following

$$\frac{\left|m_{t_{\rm lept}} - m_{t_{\rm had}}\right|}{m_{t_{\rm lept}} + m_{t_{\rm had}}}$$

$$m_{t_{
m lept}}/m_{t_{
m had}} > 0.9.$$

Relation between MS mass $m_{t}(\mu)$ and pole mass m_{t}^{pole}

- The QCD relation between the 2 schemes is known to four loops.
- Here truncated at two loops to match the precision of the tt+ 1-jet cross section used to extract the mass in both schemes.

$$m_t^{\text{pole}} = m_t(m_t) \left(1 + \frac{4}{3} \frac{\alpha_s \left(\mu = m_t\right)}{\pi} \right) + O(\alpha_s^2)$$

The pole mass result is obtained for $\alpha_{_{\rm S}}$ (163 GeV) ~ 0.116

- When converting mt(mt) to m pole t the obtained value is \approx 170.9 GeV.
 - Good agreement with the direct extraction of m_t^{pole} .

m^{pole} , from t \overline{t} +1jet production Unfolding methodology

$$\mathcal{R}^{t\bar{t}+1\text{-}jet}(\rho_{s}) = \left[\mathcal{M}^{-1} \otimes \mathcal{R}^{det}(\rho_{s})\right] \cdot f(\rho_{s}) \cdot f^{ph.sp.}\left(\rho_{s}, \mathcal{R}^{t\bar{t}+1 \text{ jet}}_{ACC}\right).$$

- R data distribution is corrected for the following in order to get the distribution at parton level and compare with **fixed order calculation**.
 - Detector
 - \circ Hadronization
 - gluon radiation
 - top-quark decay effects

JHEP11(2019)150

*m^{pole}*_t from t*t*+1jet production Summary

- m_{t}^{pole} result obtained from data unfolded to parton level is compatible with previous measurements
- Statistical and systematic uncertainties reduced by a factor 2 w.r.t 7 TeV measurement JHEP10(2015)121
 - Due to large reduction in JES systematic
 - $\blacksquare \quad More stats \rightarrow finer binning$
 - larger sensitivity of \mathcal{R} to top-quark pole mass
 - Better knowledge of the detector

ATLAS+CMS Preliminary LHCtopWG	ATLAS+CMS Preliminary m _{top} from cross-section measurements November 2023 LHC <i>top</i> WG					
	total stat m _{top} ± tot (stat ±	syst ± theo) [GeV] $\int L dt$	Ref.			
σ(tīt) inclusive, NNLO+NNLL						
ATLAS, 7+8 TeV	⊢ 172.9 ^{+2.5} _{-2.6}	≤20 fb ⁻¹	[1]			
CMS, 7+8 TeV	⊢ • 173.8 ^{+1.7} _{-1.8}	≤19.7 fb ⁻¹	[2]			
CMS, 13 TeV	+1.9 169.9 -2.1	$(0.1 \pm 1.5 + 1.2 - 1.5)$ 35.9 fb ⁻¹	[3]			
ATLAS, 13 TeV	⊢ 173.1 ^{+2.0} -2.1	36.1 fb ⁻¹	[4]			
LHC comb., 7+8 TeV	⊢ , 173.4 ^{+1.8} _{-2.0}	≤20 fb ⁻¹	[5]			
σ(tī+1i) differential NLO						
ATLAS, 7 TeV		$(1.5 \pm 1.4 \begin{array}{c} ^{+1.0}_{-0.5})$ 4.6 fb ⁻¹	[6]			
ATLAS, 8 TeV		$(0.4 \pm 0.9 + 0.7)_{-0.3}^{+0.7})$ 20.2 fb ⁻¹	[7]			
CMS, 13 TeV		$(1.3^{+0.5}_{-0.4})$ 36.3 fb ⁻¹	[8]			
σ(tŧ) n-differential, NLO						
ATLAS, n=1, 8 TeV	⊢┼╼┼┤ 173.2 ± 1.	6 (0.9 \pm 0.8 \pm 1.2) 20.2 fb ⁻¹	[9]			
CMS, n=3, 13 TeV	⊢ 170.5 ± 0.	8 35.9 fb ⁻¹	[10]			
m _{top} from top quark decay CMS, 7+8 TeV comb. [11] ATLAS, 7+8 TeV comb. [12]	[1] EPJC 74 (2014) 3109 [5] [2] JHEP 08 (2016) 029 [6] [3] EPJC 79 (2019) 368 [7] [4] EPJC 80 (2020) 528 [8]	JHEP 2307 (2023) 213 [9] EPJC 77 (2017) 80 JHEP 10 (2015) 121 [10] EPJC 80 (2020) 6 JHEP 11 (2019) 150 [11] PRD 93 (2016) 07 JHEP 07 (2023) 077 [12] EPJC 79 (2019) 2	4 58 '2004 90			
			I			
155 160 165	1/0 1/5 180	185 190				

JHEP11(2019)150

Top mass SMT: recoil in PS

- A new uncertainty due to gluon emission in $t \rightarrow Wb$. Various schemes:
 - Powheg+Pythia8 (default):
 - recoil-to-colour=ON scheme
 - where any gluon radiation after the first emission recoils against the b-quark.
 - Pythia (previous version from Run-1):
 - **recoil-to-colour=OFF** scheme, where the W-boson was the recoiler.
 - A recent third option (**Recoil-to-Top**) allows the **top** to be the **recoiler**.
 - All these schemes vary the amount of :
 - out-of-cone radiation and W/b momentum fraction
 - translates into a shift of the inferred mtop.
 - Following previous recommendations, ATLAS has added recoil-to-top vs recoil-to-colour=ON as an additional uncertainty.
 - No dedicated tuning of the recoil-to-top has been performed yet. Current uncertainties probably overestimate the effect.

Thomas McLachlan

Modelling of heavy-quark fragmentation

- A need to describe the momentum transfer between b-quark and b-hadron:
 - Free parameters are tuned to data (e+e colliders).
- Pythia 8 uses the Lund-Bowler parametrization:

$$f(z) = \frac{1}{z^{1+br_b m_b^2}} (1-z)^a \exp(-bm_T^2/z) \qquad m_T = \sqrt{m_B^2 + p_T^2}$$

DESY.

- **z** fraction of longitudinal energy carried by the b-hadron relative to b-quark.
- **a**, **b** and r_b are the free parameters $\circ r_b$ is specific to **b-fragmentation**.
- Nominal ATLAS A14 description of the b-quark fragmentation is improved by fitting for the r_b parameter using data from LEP and SLC.
- **Best** r_b value extracted from a \Box^2 fit to:
 - x_B = 2p_B p_Z /m²_Z
 The relative B-hadron energy to the Z-boson mass.

Modelling of heavy-quark fragmentation

• The \square^2 curves of the four experiments combined in a single \square^2 one

Experiment	r_b	χ^2/ndf	
ALEPH	1.070 ± 0.035	21/18	
DELPHI	1.094 ± 0.030	73/8	
OPAL	1.023 ± 0.019	18/19	
SLD	1.092 ± 0.018	58/21	
Best fit:	$r_{b} = 1.05 \pm 0.02$		

Modelling hadron production and decays

• The production fractions of weakly decaying b- and chadrons have been rescaled to the PDG values.

Hadron	PDG	Powheg+Pythia8	Scale Factor
B^0	0.404 ± 0.006	0.429	0.941 ± 0.014
B^+	0.404 ± 0.006	0.429	0.942 ± 0.014
B_s^0	0.103 ± 0.005	0.095	1.088 ± 0.052
b-baryon	0.088 ± 0.012	0.047	1.87 ± 0.26
D^+	0.226 ± 0.008	0.290	0.780 ± 0.027
D^0	0.564 ± 0.015	0.553	1.020 ± 0.027
D_s^0	0.080 ± 0.005	0.093	0.857 ± 0.054
c-baryon	0.109 ± 0.009	0.038	2.90 ± 0.24

• The branching ratios of the b- and c hadron decays containing a soft muon are also adjusted.

Hadronic	PDG	POWHEG	Scale	
Decay Mode		Ρυτηία8	Factor	
$b \rightarrow \mu$	$0.1095 \substack{+0.0029 \\ -0.0025}$	0.106	$1.032 \substack{+0.0027 \\ -0.0023}$	
$b \rightarrow \tau$	0.0042 ± 0.0004	0.0064	0.661 ± 0.062	
$b \rightarrow c \rightarrow \mu$	0.0802 ± 0.0019	0.085	0.946 ± 0.022	
$b \rightarrow \bar{c} \rightarrow \mu$	0.016 ± 0.003	0.018	0.89 ±0.17	
$c \rightarrow \mu$	0.082 ± 0.005	0.084	0.976 ± 0.059	

DESY.