Higgs interference effects in topquark pair production in the 1HSM

Based on 2309.16759, in collaboration with Nikolas Kauer, Alexander Lind, Jonas Lindert and Ryan Wood

Outline

- Overview of the 1-Higgs singlet model
- Higgs interference effects at NLO
- Treatment of non-factorisable corrections
- Sensitivity to BSM effects

The 1-Higgs singlet model

Add a real scalar fields, with the following potential

$$V = \lambda \left(\phi^{\dagger}\phi - \frac{v^2}{2}\right)^2 + \frac{1}{2}M^2s^2 + \lambda_1s^4 + \lambda_2s^2\left(\phi^{\dagger}\phi - \frac{v^2}{2}\right) + \mu_1s^3 + \mu_2s\left(\phi^{\dagger}\phi - \frac{v^2}{2}\right)$$

After spontaneous symmetry breaking, the new scalar field mixes with the SM Higgs doublet to give two neutral spin-0 particles

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ H+v \end{pmatrix} \qquad \qquad h_1 = H\cos\theta - s\sin\theta$$
$$h_2 = H\sin\theta + s\cos\theta$$

The 1-Higgs singlet model

Add a real scalar fields, with the following potential

$$V = \lambda \left(\phi^{\dagger}\phi - \frac{v^2}{2}\right)^2 + \frac{1}{2}M^2s^2 + \lambda_1s^4 + \lambda_2s^2\left(\phi^{\dagger}\phi - \frac{v^2}{2}\right) + \mu_1s^3 + \mu_2s\left(\phi^{\dagger}\phi - \frac{v^2}{2}\right)$$

After spontaneous symmetry breaking, the new scalar field mixes with the SM Higgs doublet to give two neutral spin-0 particles

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ H+v \end{pmatrix} \qquad \qquad h_1 = H\cos\theta - s\sin\theta$$
$$h_2 = H\sin\theta + s\cos\theta$$

Fixed parameters: $M_{h_1} = 125 \,\text{GeV}$ $\mu_1 = \lambda_1 = \lambda_2 = 0$

Free parameters: M_{h_2}, θ , with 8 benchmark points

$M_{h_2} \; [\text{GeV}]$	700	1000	1500	3000
$\theta = \theta_1$	$\pi/15$	$\pi/15$	$\pi/22$	$\pi/45$
	pprox 0.21	≈ 0.21	≈ 0.14	pprox 0.07
$\theta = \theta_2$	$\pi/8$	$\pi/8$	$\pi/12$	$\pi/24$
	≈ 0.39	≈ 0.39	pprox 0.26	≈ 0.13

Higgs effects in top-antitop production

A heavy Higgs boson can decay into a top-antitop pair

NLO QCD corrections

- Both Higgs and top production are affected by large K-factors, therefore the first reliable perturbative order is NLO
- Examples of virtual corrections to the interference

NLO QCD corrections

- Both Higgs and top production are affected by large K-factors, therefore the first reliable perturbative order is NLO
- Examples of virtual corrections to the interference

NLO corrections for our process of interest involve combinations of contributions at different loop orders \Rightarrow not available in automated tools

NLO QCD calculation

Ingredients for the NLO calculation

Emission of an additional gluon

• Interference of virtual corrections and LO amplitude

• Subtraction counterterms to ensure the cancellation of infrared and collinear divergences in real and virtual contributions

NLO QCD calculation: Helac+OpenLoops

Ingredients for the NLO calculation

- Emission of an additional gluon $g = \underbrace{00000}_{g} \underbrace{h_1, h_2}_{\overline{t}} \underbrace{t}_{\overline{t}}$ $g = \underbrace{00000}_{g} \underbrace{f_{\overline{t}}}_{\overline{t}} \underbrace{f_{\overline{t}}} \underbrace{f_{\overline{t}}}_{\overline{t}} \underbrace{f_{\overline{t}}}_{\overline{t}} \underbrace{f_{\overline{t}}} \underbrace{f_{\overline{t}}}_{\overline{t}} \underbrace{f_{\overline{t}}} \underbrace{f_{\overline{t}}}_{\overline{t}} \underbrace{f_{\overline{t}}} \underbrace{$
- Interference of virtual corrections and LO amplitude

• Subtraction counterterms to ensure the cancellation of infrared and collinear divergences in real and virtual contributions

NLO QCD calculation: Helac+OpenLoops

Ingredients for the NLO calculation

[Buccioni Lang Lindert Maierhöfer Pozzorini Zhang Zoller 1907.13071]

• Interference of virtual corrections and LO amplitude

[Aglietti Bonciani Degrassi Vicini hep-ph/0611266]

 Subtraction counterterms to ensure the cancellation of infrared and collinear divergences in real and virtual contributions Helac-Dipoles [Czakon Papadopoulos Worek 0905.0883]

Total cross-sections: SM

NLO predictions with stable tops

$$|\mathcal{M}|^{2} = \underbrace{|\mathcal{M}_{\text{QCD}}|^{2}}_{\text{QCD background}} + \underbrace{|\mathcal{M}_{h_{1}}|^{2}}_{\text{Higgs signal}} + \underbrace{2\text{Re}(\mathcal{M}_{h_{1}}^{*}\mathcal{M}_{\text{QCD}})}_{\text{Higgs-QCD interference}}$$

$pp (\to \{h_1\}) \to t\bar{t} + X$ in the SM						
QCD background		Higgs signal		Higgs-QCD Interference		
$ \mathcal{M}_{ m QCD} ^2$		$ \mathcal{M}_{h_1} ^2$		$2\mathrm{Re}(\mathcal{M}_{h_1}^*\mathcal{M}_{\mathrm{QCD}})$		
$\sigma_{ m NLO}^{ m QCD} \ [m pb]$	$K^{\rm QCD}$	$\sigma_{ m NLO}^{ m Higgs} \ [m pb]$	$K^{ m Higgs}$	$\sigma_{ m NLO}^{ m interf}$ [pb]	K^{interf}	
675.23(4)	1.5965(1)	0.030971(3)	1.6512(2)	-1.4625(1)	2.0101(2)	

- Large K-factors for all contributions \Rightarrow NLO needed
- Our results can be compared to the ansatz by Hespel, Maltoni, Vryonidou
 [Hespel Maltoni Vryonidou 1606.04149]]

$$K_{\text{estimate}}^{\text{interf}} = \sqrt{K^{\text{Higgs}} \cdot K^{\text{QCD}}} = 1.62$$

Total cross-sections: BSM

NLO predictions with stable tops

$ \mathcal{M} ^2 = \mathcal{M}_{\text{QCD}} ^2 + \mathcal{M}_{h_1} + \mathcal{M}_{h_2} ^2 + 2\text{Re}((\mathcal{M}_{h_1}^* + \mathcal{M}_{h_2}^*)\mathcal{M}_{\text{QCD}})$						
QCD background Higgs signal Higgs-QCD interference						
$pp (\to \{h_1, h_2\}) \to t\bar{t} + X$ in the 1HSM						
		Higgs signal		Higgs–QCD interference		
		$ \mathcal{M}_{h_1}+\mathcal{M}_{h_2} ^2$		$2\mathrm{Re}\left((\mathcal{M}_{h_1}^* + \mathcal{M}_{h_2}^*)\mathcal{M}_{\mathrm{QCD}}\right)$		
	M_{h_2} [GeV]	$\sigma_{ m NLO}^{ m Higgs} \; [m pb]$	$K^{ m Higgs}$	$\sigma_{ m NLO}^{ m interf}$ [pb]	K^{interf}	
$ heta_1$	700	0.029108(2)) $1.6234(2)$	-1.388(8)	1.99(2)	
	1000	0.027334(2)) 1.6459(2)	-1.3924(2)	2.0151(2)	
	1500	0.029932(3)) $1.6745(2)$	-1.4369(2)	2.0194(2)	
	3000	0.030933(3)) $1.6661(2)$	-1.4781(2)	2.0414(2)	
$ heta_2$	700	0.027231(2)) 1.5689(2)	-1.186(8)	1.88(2)	
	1000	0.020114(2)) 1.6442(2)	-1.21053(9)	1.9867(2)	
	1500	0.026519(2)) 1.6617(2)	-1.34853(9)	1.9958(2)	
	3000	0.029772(2)) $1.6452(2)$	-1.4365(2)	2.0097(2)	

Non-factorisable **real** contributions \Rightarrow OpenLoops

Non-factorisable **virtual** contributions \Rightarrow two-loop integrals with different masses in the propagators, beyond today's technology

IR divergent virtual contributions can be approximated in the soft limit

IR divergences must cancel against integrated countertems, as per the famous NLO formula

$$\sigma_{\rm NLO} = \underbrace{\int_{m} d\sigma_{B}}_{\sigma_{\rm LO}} + \underbrace{\int_{m+1} \left[d\sigma_{R} - \underbrace{d\sigma_{B} \otimes \mathbf{V}}_{\text{local counterterms}} \right]}_{\text{local counterterms}} + \int_{m} \left[d\sigma_{V} + d\sigma_{B} \otimes \underbrace{\int_{1} \mathbf{V}}_{\text{integrated counterterms}} \right]$$

The soft limit of non-factorisable corrections is preserved by the approximation below

IR divergences are correctly cancelled against the integrated counterterms

There are non-singular non-factorisable corrections that are not captured by our approximation, e.g.

These contributions are beyond today's two-loop technology and require dedicated studies exploiting suitable approximations

Differential distributions

Benchmark scenarios with $\theta = \theta_1$

Differential distributions

Benchmark scenarios with $\theta = \theta_2$

Impact of BSM effects

Impact of BSM effects

LO vs NLO: note large K-factors

Zooming in at the mass window

Estimation of theory uncertainties

- 7-scale variations
- 20-30%@NLO

Sensitivity estimates to BSM effects

Naïve estimate for the significance from Poisson statistcs

$$\frac{|S|}{\sqrt{B}} = \sqrt{\mathcal{L}} \, \frac{\sigma_{\text{interf}} + \sigma_{\text{Higgs}}}{\sigma_{\text{QCD}}}$$

Improvement considering

- fully leptonic top decays
- estimate of systematic uncertainties

Exclusion limit:

$$\frac{S|}{B} \frac{\Delta \sigma_{\text{stat}}}{\Delta \sigma_{\text{tot}}} \sqrt{BR_{2\ell 2\ell'}} > 2$$

		invariant	$ S /(\sqrt{B}\Delta\sigma_{ m tot}/\Delta\sigma_{ m stat})\sqrt{{ m BR}_{2\ell 2\ell'}}$		
	M_{h_2} [GeV]	mass window	Run 2	Run 3	HL-LHC
	700	$600790~\mathrm{GeV}$	0.66(3)	0.97(5)	3.1(2)
$ heta_1$	1000	$9001115~\mathrm{GeV}$	0.186(1)	0.274(2)	0.866(5)
	1500	$12001600~\mathrm{GeV}$	- PDFLTMTNIADV -		
θ_2	1500	$10501800~\mathrm{GeV}$	_	- -	_

[Snowmass White Paper 2205.02140]

Conclusions

- A heavy Higgs decaying into a top-antitop pair interferes with QCD induced top-antitop production
- This interference can induce a peak-dip structure in top quark differential distributions
- We have constructed a framework to compute such effects at NLO QCD
- In the 1HSM, BSM effects are small and point to the need for dedicated cut-based or BDT analysis, including top decays

Outlook

- Top decays using POWHEG \Rightarrow improved sensitivity studies
- CP-odd Higgs
- Full explorations of models with additional scalars, e.g. 2HDM

Extra slides

Form factors for $\mathbf{gg} \to \mathbf{H}$

Coupling of a Higgs to two on-shell gluons of momenta q_1, q_2

$$\mathcal{V}^{\mu\nu,ab}(q_1,q_2) = \frac{\alpha_s}{4\pi v} F \,\delta^{ab} \left((q_1 \cdot q_2) \,g^{\mu\nu} - q_1^{\nu} \,q_2^{\mu} \right)$$

The form factor *F* has a series expansion in powers of α_s

One-loop form factor in terms of $\tau_q \equiv (q_1 \cdot q_2)/(2m_q^2)$

$$F_1 = -\sum_q \frac{2}{\tau_q^2} \left[\tau_q + \frac{1}{4} (1 - \tau_q) \ln^2 x_q \right] \qquad \qquad x_q \equiv \frac{\sqrt{1 - \tau_q^{-1} - 1}}{\sqrt{1 - \tau_q^{-1} + 1}}$$

Form factors for $\mathbf{gg} \to \mathbf{H}$

Two-loop form factor in $4 - 2\epsilon$ dimensions

$$F_{2} = \left(\frac{4\pi\mu_{R}^{2}}{-2(q_{1}\cdot q_{2}) - i0}\right)^{\epsilon} \frac{1}{\Gamma(1-\epsilon)} \times \left\{-\left(\frac{C_{A}}{\epsilon^{2}} + \frac{\beta_{0}}{\epsilon} + \beta_{0}\ln\left(\frac{2(q_{1}\cdot q_{2})}{\mu_{R}^{2}}\right) + \mathcal{H}\right)F_{1}\right\}$$

[Aglietti Bonciani Degrassi Vicini hep-ph/0611266]

