

Top-antitop spin correlation and entanglement

<u>R. Demina</u> for CMS collaboration

University of Rochester

06/05/2024

Spin correlation and entanglement

Polarization, P and spin correlation matrix, C determine the angular distribution of the decay products in the helicity basis as in [1212.4888]

$$\frac{d\sigma}{d\Omega d\bar{\Omega}} = \sigma_{norm} (1 + \kappa \vec{P} \cdot \Omega + \bar{\kappa} \vec{\bar{P}} \cdot \bar{\Omega} - \kappa \bar{\kappa} \Omega \cdot C \cdot \bar{\Omega})$$

 κ – spin analyzing power of top/antitop decay products

 $\Omega-\text{unit}$ vector in the direction of the decay product

 $2^{x}3(P)+3^{x}3(C) = 15$ coefficients Q_{m}

Alternatively, we can define χ -opening angle between the two decay products, then

$$\frac{d\sigma}{d\cos\chi} = A(1 + D\kappa\bar{\kappa}\cos\chi) \qquad \qquad C_{nn} + C_{rr} + C_{kk} = Tr(C) = -3D$$

and $\tilde{\chi}$, where the sign of n-component in one of the decay products is inverted

$$\frac{d\sigma}{d\cos\tilde{\chi}} = A(1 + \tilde{D}\kappa\bar{\kappa}\cos\tilde{\chi}) \qquad \qquad C_{nn} - C_{rr} - C_{kk} = 3\tilde{D}$$

The system is considered **separable** if its density matrix can be factored into that of individual states $\rho = \sum_{n} p_{n} \rho_{n}^{t} \rho_{n}^{\bar{t}}$ Otherwise, it is considered **entangled** \rightarrow **Peres-Horodecki criterion** [2003.02280] **Entanglement is a result of spin correlation.** $\Delta_{E} = C_{nn} + |C_{rr} + C_{kk}| > 1$

Two approaches – both presented

- Use full angular information of two decay products (e.g. charged leptons, or a lepton and a d-type quark) to measure the full matrix C and then construct Δ_E
- Use the distribution in χ and $\widetilde{\chi}$ to measure D and \widetilde{D}

Dilepton vs I+jets channels

OF ROCHESTER

- Dilepton based on <u>PRD 100 (2019) 072002</u>
 - Lower branching ratio
 - |κ|=1 for charged leptons, which are easy to ID →Ideal channel for spin correlation
 - Lower *p_T* cuts for leading/subleading lepton (25/20 GeV) → higher efficiency at the threshold
 - Worse M_{tt} resolution, not ideal for differential measurement
 - Best for threshold
 - high entanglement
 - potential for "toponium" observation
 - mostly time-like separated events
 - CMS Top-23-001

- Lepton+jets
 - Higher branching ratio
 - |κ|=1 for down-type quarks, but they are harder to identify – employ AI (~66%)
 - Higher *p_T* cut for single lepton (30 GeV) and for 4 jets (30 GeV) → lower efficiency at the threshold, but OK for high *M_{tt}*
 - Better *M*_{tt} resolution, good for differential measurement
- Advantage for high M_{tt}
 - high entanglement
 - potential for observation of Bell Inequality violation
 - mostly space-like separated events
- CMS Top-23-007

Signal modeling

- NLO POWHEG+Pythia8
- Include EW corrections with HATHOR (*Comput. Phys. Commun. 182 (2011) 10*)
- NNLO (Phys. Rev. Lett. 127 (2021) 062001)
 - Dilepton: p_T reweighting to match the top quark p_T spectrum from a fixed order ME calculation at NNLO
 - Lepton+jets: NN-based reweighting to match NNLO distributions at reco level
- Add "toponium" (pseudo-scalar color singlet predicted by non-relativistic QCD)
 - M(toponium)-344 GeV, $\sigma = \sim 6.5 \text{pb}$
 - Sumino, Fujii, Hagiwara, Murayama & Ng (PRD'93)
 - Jezabek, Kuhn & Teubner (Z.Phys.C'92)
 - B. Fuks et al. (PRD 104 (2021) 034023)
 - affects the invariant mass distribution and the spin correlations at the threshold

Dilepton channel

To extract *D* we measure the distribution in the sensitive variable $-\cos \chi$ Optimize M_{tt} cut to maximize sensitivity to entanglement $\frac{d\sigma}{d\cos\chi} = A(1 + D\kappa\overline{\kappa}\cos\chi)$ Determine the effect of acceptance and efficiency by comparing $D_{reco}(M_{reco})$ vs $D_{gen}(M_{gen}$ full phase space)

CMS Preliminary 35.9 fb⁻¹ (13 TeV) CMS Preliminary 35.9 fb⁻¹ (13 TeV) Events / 0.33 50000 40000 Events 12000 tt+Z/W \square η_t signal tī signal 10000 Stat⊗Syst Diboson Sinale t $345 < m(t\bar{t}) < 400 \text{ GeV}$ tt other Z+jets Data The ttbar entanglement is $0.0 < \beta < 0.9$ 8000 observed at $> 5.0 \sigma$ level for 6000 $345 < m(t\bar{t}) < 400$ 30000 0% No Spin Corr. 50% No Spin Corr. <u>345<Mtt<400 GeV, β<0.9</u> $0.0 < \beta < 0.9$ 4000 20000 100% No Spin Corr. -50% No Spin Corr. 2000 10000 -100% No Spin Corr. nosc Mixture Nixture 1.25 1.00 **CMS** Preliminary 35.9 fb⁻¹ (13 TeV) Data 1.025 Powheg+Pythia8 - No n × 0.75 Entanglement Threshold 1.00 Data -0.66 -0.33 0.0 0.33 0.66 -1 0.975 POWHEGv2+PYTHIA8 -0.66 -0.33 0.0 0.33 0.66 $\cos \chi$ MG5_aMC@NLO+PYTHIA8 [FxFx] $\cos \chi$ POWHEGv2+HERWIG 0000 (tt only) $345 < m(t\bar{t}) < 400 \text{ GeV}$ $0.0 < \beta < 0.9$ ~1.5 σ tension with the w/out Toponium expectation if toponium is not $-0.489^{+0.026}_{-0.025}$ included Separable w/ **Toponium** $-0.478^{+0.025}_{-0.027}$ result ± (total) -0.60 -0.55 -0.50 -0.45 -0.40 -0.35 -0.30

D

06/05/24 Regina Demina, University of Rochester

L+jets channel

- OF ROCHESTER
- We pursue both strategies evaluation of the full correlation matrix C and polarization vectors P as well as D and \tilde{D} measurements
- The measurements are done inclusively and differentially in bins of M_{tt} , $cos\theta$ and top quark p_T
- Event reconstruction (jet-parton assignment) is performed using NN
- Remove events with NN score S_{NN}<0.1;
- Divide events into categories based on lepton flavor, number of b-tags, and NN score

Regina Demina, University of Rochester

06/05/24

8

L+jets – full matrix measurement

• Full measurement of the vectors *P* and matrix *C* is performed using templates defined based on the functions of angles of top and antitop decay products

$$\Sigma_{m} = \sigma_{norm} \left\{ \kappa \sin \theta_{p} \cos \phi_{p}, \dots - \kappa \overline{\kappa} \cos \theta_{p} \cos \theta_{\overline{p}} \right\}$$

• The total cross section is a linear combination of these templates with coefficients Q_m that are the components of *P* and *C* $\sum_{m} \sum_{n} \sum_{m} \sum_{$

$$\Sigma_{tot} = \Sigma_0 + \sum_{m=1}^{10} Q_m \Sigma_m$$

• The templates T_m are defined at the reco level. To avoid generating events with every possible combination of Q_m the events are reweighted with weights defined at the gen level $W_i = \frac{\sum_i}{\sum_{tot}}$ To minimize the bias due to variation of Q_m or T_m within the bin we perform the measurement in finer bins in M_{tt} and $\cos \theta$, \sum_{tot}^{-200}

then combine

0

L+jets – spin correlation matrix measurement

- Full measurement of the *P* and *C* is performed inclusively and differentially in bins of M_{tt} , $cos\theta$ and top p_T
- Full covariance matrix will be provided with the published result
- A good agreement with the SM prediction is observed

Regina Demina, University of Rochester

00

L+jets - entanglement results

- We quantify the entanglement using Peres Horodecki criterion
- Significant entanglement is observed in the high M_{tt} region

$$\Delta_E = C_{nn} + |C_{rr} + C_{kk}| > 1$$

Summary

- Angular distributions of the top and antitop quarks were used to measure their **polarization** and **spin correlation matrix**, C_{ij} inclusively and in bins of M_{tt} , $cos\theta$ and top quark p_T
- In some regions of phase space top and antitop get entangled, which can be demonstrated using **Peres-Horodecki criterion** based on their spin correlation matrix
- Maximally entangled states are a singlet produced at the threshold, and a triplet produced at high M_{tt}
- Both dilepton and single lepton channels were used for spin correlation studies
 - dilepton channel is more sensitive at the production threshold,
 - l+jets channel is better suited for high M_{tt}
- Based on *D* measurement in dilepton channel the entanglement was observed at $>5\sigma$ level at low M_{tt}
 - $345 < M_{tt} < 400 \text{ GeV}, \beta < 0.9$
- Using full matrix measurement the entanglement was observed at 6.7 σ level at high M_{tt}
 - $M_{tt} > 800 \text{ GeV}, |\cos\theta| < 0.4$
- The later result was found to exceed the maximum entanglement achievable by classical communication by $>5\sigma$

Space-like separated events

CMS

Spin correlations are evaluated based on the direction of the top quark decay products. Hence, the time of top (antitop) decays $t_1(t_2)$ is considered to be the moment when the measurements is performed. Events are space-like separated if

$$\frac{1-\beta}{1+\beta}t_1 < t_2 < \frac{1+\beta}{1-\beta}t_1$$

06/05/24 Regina Demina, University of Rochester

Mttbar, GeV

1000

Systematics

- The analysis is statistics limited
- Theoretical uncertainties
 - Mtop, renormalization/factorization scale, NNLO, EW
 - NB. Toponium effect is small for lepton+jets \sim 5E-04
- Experimental uncertainties:
 - Jet energy scale, b-tagging efficiency

Unc. rel. b-tag type3 b-jet N

rel. overall effect

06/05/24 Regina Demina, University of Rochester