12th Edition of the Large Hadron Collider Conference

Heavy-flavour polarization measurements

Victor Feuillard, Xiaozhi Bai

for the ALICE, ATLAS, CMS, LHCb Collaborations

Boston, USA, 3-7 June, 2024

Motivation

- **pp collisions**: Important to study the production of vector mesons in hadronic collisions, and also needed to provide a reference for Pb–Pb measurements
- AA collisions: Polarization measurements give access to different time scales and mechanisms, like the earlyproduced magnetic field, angular momentum, and hadronization mechanisms

 06/05/24
 Heavy-flavour polarization measurements
 1

Introduction of the reference frames

Polarization axis:

P. Faccioli et al. EPJ C69 (2010) 657-673

Helicity (HX): direction of vector meson in the collision center of mass frame

Collins-Soper (CS): the bisector of the angle between the beam and the opposite of the other beam, in the vector meson rest frame

Event Plane based frame (EP): axis orthogonal to the event plane in the collision center-of-mass frame

06/05/24

2

J/ψ polarization in pp collisions

- > No strong J/ ψ polarization is observed by ALICE at forward rapidity up to $p_{\rm T} = 15 \text{ GeV}/c$
- Results compatible within uncertainties with LHCb measurements at 7 TeV

ALICE, PRL 108 (2012) 082001 ALICE, EPJC 78 (2018) 562 LHCb, Eur. Phys. J. C (2013) V. Cheung, JHEP 12 (2018) 057 Y, Mang, Phys.Rev.D 104 (2021) 9, 094026

$\Upsilon(1S)$ polarization in pp collisions

- $\succ \lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}$ are compatible with zero in Helicity and Collins-Soper reference frames, ALICE does not observe a significant $p_{\rm T}$ dependence within the uncertainties
- $\succ \lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}$ evaluated down to zero $p_{\rm T}$
- ➤ Results compatible within uncertainties with LHCb measurements at 8 TeV

LHCb, JHEP 12 (2017) 110

Y(nS) polarization in pp collisions at CMS

- > $\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}$, and $\tilde{\lambda}$ are closer to zero in Helicity and Collins-Soper reference frames.
- > Does not observe a significant multiplicity and p_T dependence within the uncertainties

CMS, Phys. Rev. D 97 (2018) 072010

> A significant difference between χ_{c1} and χ_{c2} in the helicity frame is observed.

 \succ An agreement with the NRQCD prediction

CMS, Phys. Rev. Lett. 124 (2020) 162002 P. Faccioli, et al, Eur. Phys. J. C 78, 268 (2018)

- Measurement performed with respect to the helicity reference frame
- > Prompt $D^{*+}\rho_{00}$ compatible with 1/3 within uncertainties (no polarization)
- ► Non-prompt $\mathbf{D}^{*+} \rho_{00} > 1/3$ due to the helicity conservation of the beauty hadrons decay
- The charm quarks are either produced unpolarised or their polarization is washed out during the hadronization process

$$rac{\mathrm{d}N}{\mathrm{d}\cos heta^*} \propto \left[1-
ho_{00}+(3
ho_{00}-1)\cos^2 heta^*
ight]$$

ALICE, Phys.Lett.B 846 (2023) 137920 T. Sjöstrand et al., CPC 191 (2015) 159-177

Measurement of the D*+ longitudinal polarization fraction

First measurement of the **D**^{*+} longitudinal polarization fraction via $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$ decay

> These measurements are compatible with SM predictions and with the results obtained by the Belle experiment

First observation of joint-polarization of $W^{\pm}Z$

- ➢ First observation of joint-polarization of W[±]Z
- The measured values agree with the SM predictions and are consistent with the measured joint helicity fractions when neglecting interference among polarisation states
 ATLAS, Phys. Lett. B 843 (2023) 137895

ATLAS, Phys. Lett. B 843 (2023) 137895 M. Grazzini, JHEP 05 (2017) 139

Λ_c^+ baryon polarization measurement

- Λ_{c}^{+} polarization was measured via $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$, large Λ_{c}^{+} polarization is found, measured with absolute uncertainties of order 1%.
- The normal polarization, sensitive to timereversal violation effects and final-state interactions, is compatible with zero

LHCb, PhysRevD.108.012023

- \succ First observation of the Λ polarization along the beam direction in p–Pb collisions
- > Multiplicity dependence does not fully agree with vorticity expectation
- > It remains to see if other polarisation mechanism is the origin, e.g. polarisation fragmentation functions

Charmonium polarization results in heavy-ion collisions

- > $\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}$ close to zero in Helicity and Collins-Soper reference frames
- Maximum deviation from zero is 2.1σ, and 3.3σ w.r.t higher precision LHCb results at low p_T.
- Comparable with ALICE results at 8 TeV in pp collisions within uncertainties.

ALICE, Phys.Lett.B 815 (2021) 136146 ALICE, Eur. Phys. J. C78 no. 7, (2018) 562 LHCb, JHEP 12 (2017) 110

- Measuring bottomonia , early production of the beauty quarks, significantly lower contribution via (re-)generation
- The Y(1s) polarization was measured in Helicity and Collins-Soper reference frames
- > $\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}$ all compatible with zero but the measurement is still strongly limited by the statistics

ALICE, Phys.Lett.B 815 (2021) 136146

- → 0 10% : ρ_{00} compatible with 1/3 , 30–50% : ρ_{00} > 1/3 at high $p_{\rm T}$
- Significant deviation at larger rapidity (0.3 < |y| < 0.8) than at midrapidity (|y| < 0.3)

- > The λ_{θ} deviation reaches ~3.9 σ at low $p_{\rm T}$ (2 < $p_{\rm T}$ < 4 GeV/c) in 30-50%
- Significant polarization (~3.5 σ) observed in semicentral collisions (40-60%) in 2 < p_T < 6 GeV/c
- > In LHC Run 3 ALICE will be able to study polarization at midrapidity via the dielectron channel

Heavy-flavour polarization measurements

ALICE, PRL 131 (2023) 4, 042303

15

- > Agreement with the:
 - $\rho_{00} < 1/3$ quark recombination at low $p_{\rm T}$
 - $\rho_{00} > 1/3$ quark fragmentation at high $p_{\rm T}$

$$\lambda_{ heta} = rac{1-3
ho_{00}}{1+
ho_{00}} \quad egin{cases} \lambda_{ heta} > 0 o
ho_{00} < 1/3 \ \lambda_{ heta} < 0 o
ho_{00} > 1/3 \end{cases}$$

Z. Tang, X. Wang, Phys.Lett. B 629 (2005) 20-26

- > At high p_T the fragmentation of heavy quarks polarized by the magnetic field translates to ρ_{00} > 1/3?
- Theory guidance needed!

> The precision of the D^{*+} polarization measurements will be improved significantly in Run 3.

 \succ The measurement of the J/ ψ polarization is performed through dielectron channel at the midrapidity.

➢ pp and p−Pb collisions:

- The measured J/ψ , Y(nS), and prompt D^{*+} polarization are closer to 0.
- A significant difference between χ_{c1} and χ_{c2} in the helicity frame is observed
- A significant Λ polarization is observed in p–Pb collisions, which depends on multiplicity and p_T
- More precise results can be expected from Run 3

Pb–Pb collisions

- J/ ψ and Y(1S) polarization consistent with zero in Helicity and Collins-Soper reference frames, but significant polarization (~3.9 σ) observed w.r.t the reaction plane for J/ ψ
- D^{*+} polarization depends on the centrality, p_T and rapidity
- Theory guidance is needed to interpret the data

Thanks